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Chapter 0

Preface

These are the blackboard notes for the first half of the course
Lineare Algebra (401-0131-00L)

held at the Department of Computer Science at ETH Ziirich in HS23. The notes roughly
correspond to what I plan to write on the tablet during my lectures (in German for the
first half of the course). The actual tablet notes will be made available after each lecture.

In structure and content, the notes are based on the book

Introduction to Linear Algebra (Sixth Edition) by Gilbert Strang, Wellesley -
Cambridge Press, 2023.

The notes are rather dense and not meant to replace full lecture notes or a book. Mainly,
they should free students from the need to copy material from the blackboard. Many
additional explanations (and answers to questions) will be given in the lectures. Exercises
to practice the material will be published in the course Moodle and are discussed during
the exercise classes.

To summarize, these notes do not represent a complete and standalone Linear Algebra
course; rather, they are meant to support the lectures and exercise classes.

I also want to point out that Strang’s book is not part of the course’s official material,
and there is no need for students to buy the book. With the blackboard notes, exercises,
lectures, and exercises classes, the course is self-contained. Strang’s book serves as rec-
ommended but optional literature.

Bernd Gértner, Ziirich, September 5, 2023


https://ti.inf.ethz.ch/ew/courses/LA23/index.html
https://moodle-app2.let.ethz.ch/course/view.php?id=20361

Chapter 1

Vectors and Matrices

1.1 Vectors and Linear Combinations

A vector is (for now) an element of R" vector = sequence (tuple) of n real numbers
1 Uy U1 wy
T ) U2 w2
- u= 7V = . 7W = Y
”—0—0—0—0—> xr Unp, Un Wnp
1 0
0= |0
0
R?: zy-plane R3: zyz-space

R: real numbers
n € IN (natural numbers)
0: zero vector.

Vector = “movement” : go
4 steps right and 1 step up!

1.1.1 Vector addition: v +w

Combine the movements!

V1 w1 U1 + w1

92 3 Vg Ws Vg + Wo
RQ:[3]+[—1]: Rt +H| .| = :

Un wn Un + wTL

“Parallelogram”



1.1.2 Scalar multiplication: cv

Move c times as far! (c: the scalar)

Yy
U1 CUq
2.9 2] _ S e B R 2
]R.3[1]— R":c : = : [1]
Up, CUp, T
1.1.3 (Linear) combination: cv + dw [12}

ol =21 = sl [ = s '

3|
Here: c =5,d = —3. - {_1] \

Every vector b = [Zl} is a combination of E} and [ ﬂ ! Proof: we want c and d such that
) —

B el =)

“Column Picture:”

Draw a parallelogram with opposite corners 0 and b

and sides parallel to E} and [_ﬂ The other two

corners are ¢ B} and d [_ﬂ .

“Row picture:”

Two equations in two unknowns c and d:

2¢+3d = by

20 —|— 3d = b1 %1
3c—d = b2 % r\= c
Draw them as lines in the cd-plane. The intersection point —by
solves both equations. 3c—d =Dy



4
. 2 4 2 [ ]
Doesn’t always work: All combinations of {3} and {61 are on a M 6
line! (Exercise: What goes wrong in column and row pictures?)
T
1.1.4 Combining more vectors, matrix notation
3
ST o [P 0] L -1 0| 5| _[t-3-1-2-0-4] _[L
2 3 1l |8 2 31 4 o 2:3+3-2—1-4| |8
~~ -~ ——
combination of 3 vectors R matrix B
matrix—Vecto;rrnultiplication
m X n matrix
7~ % Cl
’ ‘ | Co ]|3
civit+eva+ -+ v, =b rows V’1 V|2 V|n e |
combination of)? vectors in R™ Cp,
n columns
T
Matrix: “container for vectors” m x 1 matrix: a single vector in R™

1.1.5 Three vectors v, vy, v3 in R?

The combinations ¢, vy + c2vs + c3vs form a line (vectors are collinear), a plane (vectors are
coplanar), or the whole space (vectors are independent).




1.2 Lengths and Angles from Dot Products

1.2.1 Scalar product (or dot product, inner product): v - w

U1
v
R? - H : [g} —1-4+2-6=16 | R*: |
Un

1.2.2 Length of a vector: ||v|| = /v -V

SR

Why? Pythagoras!

w1
Wa

Wn

= Vw1 + Vowsg + -

e vpwy,.

.. 2
+ vz

Unit vector: |u]| = 1.

For every v # 0,
v o —
vl

is a unit vector.

0

0

< position ¢

1.2.3 Perpendicular (or orthogonal) vectors: v-w = 0

[;l] ' H] — _4.142.2-0.



Cosine Formula: v

vV-wW w
= f y 0_ \/
cos(av) VITTwI or v,w =# o

Because | cos(a)| < 1:
Cauchy-Schwarz inequality: v-w| < |v][w]-
——
| cos(a)l[[v][l[wll
Triangle inequality:
v +wi < v+ [wll.

“From 0 directly to v 4+ w is shorter than via v or w.”

Hyperplanes.
Ifd € R",d # 0, the set

{veR":v-d=0}

is a hyperplane: all vectors
perpendicular to d.

R2: a line

1.3 Matrices and Their Column Spaces

Matrix with m rows, n columns: m x n matrix (A4, B, ...) A+ B, cA:
{1 2}+'5 6] [6 8}
411 13 -+ Oin 3 4 7 8] 110 12
1 2
. . Q21 G2 -+ Q2p - - -
3x2matrix : |3 4| |mxn matrix : . . ) ] 9 12 |2 4
56 S 3 4 — |6 8
Am1  Am2 Qmn ) ) )
0 : zero matrix, a;; = 0 for all 4, j
Square matrix: m = n.
100 2 00 21 =3 200 2 1 =3
010 040 04 7 140 14 7
0 01 0 05 00 5 -3 75 -3 7 5
identity (symbol: I) diagonal upper triangular lower triangular symmetric
auzl,azj:Ole%j aZ]:OIfZ#j Cll]:()lf@>j alj:()1f2<] Qij = Qg

8



1.3.1 Matrix-vector multiplication

1 2 1 2 . 1-7+2-8
713 +8 (4 = 3 4 [8] = 3-7T+4-8
5) 6 5 6 5-7T+6-8
| —— - ~—_———
combination scalar products
ai; Q2 o Qip 1 1171 + Q1222 + + -+ A1pTy
ag1 Q2 - Q2p T2 2171 + Q22T + -+ + A2pTh
AX = = .
Am1 Q2 - Qmn Tn U121 + Am2X2 + -+ AynTn
[ - N~
A X
T1 — u; — T1 u; - X
| | | ) — Uy — ) Us - X
T1V1 +ToVy + -+ TpVy, = V1 V2 -0V, = =
N g .
vV .
combination | | |
N ~— T, — u,, —| |z, u,, X
A, column picture ~
A, row picture X scalar products

1.3.2 Column space: C(A)
All combinations (“span”) of the columns. If Aism x n,

C(A4) ={Ax:x e R"} CR™. Always: 0 € C(A).

o(b i) B | o o) i o)

T 4
(plane, 2-dim..) :i - H (a line, 1-dim..)
— 4

How many columns are needed to span C(A)?
| | | Check v, va,...,v,! If v; is a combination of vq,...,v,_q,
Ae v vo oo v then v, is dependent (not needed): Every combination of
vore " Vi,...,V; is already a combination of vy, ..., v,_y. Proof:

Cc1Vy + -+ Civj = vy + -+ 1V + Ci(lel + -+ di,lvi,l)

~\~
Vi

= (Cl + Cidl)Vl + -+ (01;1 + cidi,l)vi,l

(.

P
combination of vi,--- ,v;

v
combination of vy, ..., Vio1



Otherwise, v; is independent (needed: “adds a dimension.”)

Checking order doesn’t matter: we always find the same num-

ber of independent columns (3.4).

For vi (¢ = 1): vy,...,Vv,_; contains no vectors. 0 is the only
combination of no vectors. (“The sum of nothing is 0”.)

1.3.3 (Linear) independence of vectors

Definition: Vectors wy, wo, ..., Wy are...
...(linearly) independent if. ..

(i) no vector is a combination of the
previous ones. Or

(i) no vector is a combination of the
other ones. Or

(iii) there are no c¢i,co,...,c, besides
0,0,...,0such that

C1W1 + CcoWa + - - - + Wi, = 0.

...(linearly) dependent if...

(i) some vector is a combination of the
previous ones. Or

(ii") some vector is a combination of the
other ones. Or

(iii") there are some cq, o, ..., ¢, besides
0,0,...,0such that

C1W1 + CoWa + - - - + Wi = 0.

All say the same (are equivalent): (i) < (ii) < (iii). The opposites also: (i’) < (ii") < (iii").

Proof: (i")=-(ii") (if (i") is true, then (ii) is true): clear (“previous ones” are “other ones”).

(ii") = (iil): If

Wi = CIWi + + CG1iWi—1 + CiaWip1 + - + G Wy,

then

W1+t eaawir — Iwg + Wi + gewy = 0.

., besides 0,0, . .., 0 such that

(iii")=-(i"): If there are some ¢y, o, . .

+— (i)

« (i)

QW1+ CoWo + -+ wp =0« (iii")

take the largest i such that ¢; # 0. Then ¢;w; + cawso + - - - + ¢;w; = 0 and hence

&

W, = ——Wp] — ++* —

&

The columns of a matrix A are. ..
...independent if ...

(iii) there is no x besides 0 such that
Ax = 0.

Ci—1

—Wi—1. « (i)

(3

...dependent if ...

(iii”) there is some x besides 0 such that
Ax = 0.



1.3.4 Rank: rank(A) = number of independent columns

(RN ) R ()

Row space: R(A).

()

(plane, 2-dim.)

All combinations of the rows
Yy

ng ‘6*]):{6[2 i :ceRr)

(a line, 1-dim.)

[3 6]

[2 4]

In the examples, number of independent columns = number of independent rows. Coin-

cidence? No (3.5)! Easy case: rank 1.

Matrices of rank 1. One independent column.

U1 11 GV CpU1

All columns Vo = ClUs  Coln €U =
of A are . A=
multiples of = =
Um, C1Um Co2Up CnUm

N J/ [\ J/

~
#0 rank 1: some c;v; # 0

1.4 Matrix Multiplication AB and CR

A:m x kmatrix; B :k x nmatrix; AB :m X n matrix.

All rows
of Aare  [c1,co,..., ¢y
.
multiples of 26
Uu; - Vo u; -vp
Ug - Vg Ug - 'Vp,
Uy, - Vo Uy, - Vp

I A s v,
— u - Ug -V
AB: 2 Vl V2 o e V?’L — 2 1
| |
T m TN =~ - um'Vl
~ " B, column picture N
A, row picture
ap — [L 2o 1) _[ro+2-1 1-142-0] _ 2
|3 4|1 0] |3-0+4-1 3-14+4-0| |4
A — [0 1L 2] _[o-1+1-3 0-241-4] 3
|1 0|3 4] |1-140-3 1-240-4| |1

Vv
mn scalar products

7

Zl’)} ”column exchange’

4} 4 4
9 row exchange

Square matrices: usually, BA # AB (matrix multiplication is not commutative).
General matrices: BA can be undefined (if m # n), or of different size than AB.

11



Everything is matrix multiplication!

Vector-vector

Matrix-vector: |- 2| |} = |? Scalar (inner) product: [1 2] 3| = [11]
3 4 1 7 4
—— = =~ 1x2 ~  1xl
2x2 _2><1 2x1 2x1
) 1 2 3 3 6
Vector-matrix: [1 1} 3 4| = [4 6] Outer product: 4 [1 2} =14 3 <+ rank 1
——L S—— S——
1x2 S>—~—— 1x2 N~ 1x2
2x2 2x1 2x2
— ulB — - u; —
i = ) Vi Vg - Vv, | = |Avy Avy - Av,
e e R I A
N —~ - ~ B, column picture AB, column picture
AB, row picture A, row picture

1.4.1 Distributivity and associativity
A(B+C)=AB + AC and (B + C)D = BD + CD (AB)C = A(BC) = ABC.
More matrices: brackets don’t matter: (AB)(CD) = A(BC)D) =---= ABCD .

Distributivity: easy
Associativity: boring calculations with sums and products involving matrix entries
More matrices: needs proof!

142 A=CR
Finding the independent columns, revisited: ] 0 3
A= 2 1 { }
columns of A 3 9 \0 0 1 —21
1 20 3 1 2 0 3 %
A=12 4 1 4 2 4 1 4 ¢
36 2 5 3 6 2 5 C': the independent columns
I [ [ I R: how to combine them to get all
\21 vy | 2vy 3vy columns
V2 Rank factorization: if A has r indepen-
V3 lvs | =2vs dent columns,then A = C R .
V4 mXn mxXxr rXn
independent? | yes | no | yes | no Efficient computation: (3.2)

R is unique: if A = CR = CR/, then C(R — R') = 0 = Cw = 0 for every column w of
R — R' = w = 0, since the columns of C' are independent (1.3.3).

12



Chapter 2

Solving Linear Equations Ax = b

2.1 Elimination and back substitution

System of m linear equations in n unknowns 1, xs, . . . , !
a;ry + 1Ty + -+ apr, = b ail Q2 o Qi | |2 by
a1y + A%y + -+ + AT, = by Qg1 Q2 - Q2p T2 by
Ax=Db: . . ) . | =
Am1T1 + Q2T + -+ + ATy = bm Qm1 Qm2 *°° Qmp Tn bm
~ -~ N N —
A, mxn xeR"” beR™
Given A and b, find x! For now: m = n, A is square matrix.

2.1.1 Back substitution

If A upper triangular:
2 3 4] [n 19 equation | substitution | solution
05 6| 2] = |17 row 3 Tog =14 75 =2
2| = s _ -
00 7| |3 14 row 2 5Ty + 615 =17 | 5rg +12=17| z9=1

row 1 | 227 + 329 + 423 =19 | 221 + 11 = 19 r1 =4

2.1.2 Elimination

General case: Transform Ax = b to Ux = ¢ with same solution but upper triangular U
(Gauss elimination). Then back substitution!

13



Row Operations

2
fat number: the pivot A= 14 1
2
subtract 2-(Row 1) from (Row 2):
[ 1 0 0] 2
Ey=1-210 EpA= |0
0 01 2
subtract 1-(Row 1) from (Row 3): )
[ 1 0 0] [2
E31 = 010 E31E21A =10
-1 0 1] 0
subtract 1-(Row 2) from (Row 3):
(1 0 0] 2
Esx =10 10 EsF31FEyi A= |0
0 —1 1] |0
1 elimination matrices
Less nice case:
2 3
A= 14 6
2 8
elimination in first column:
2 3
E31E21A == 0 0
05
can’t go on with pivot 0: exchange rows 2 and 3:
100 [2 3
Pyu=10 0 1 Py Fs By A= |0 5
010 Y |00
T permutation matrix
Ugly case:
2 3 4]
A=14 6 14
2 3 17
elimination in first column: ]
2 3 4]
Es1E5;A= 10 0 6
0 0 13

no row exchange helps, give up for now!

14

3 4
1 14 b=
8 17
o
3 4
5 6 Esb =
8 17
o
3 4
5 6 E31Eyb =
5 13
S
3 4
5 6 F3yEs1 Ey b =
~ done!
A
14 b=
17,
S
4
6 E31Eyb=---
13]
o
4
13 Py B3 Eyb = - -+
6 \ﬁc,_/
~ done!
b= 2 3
05
+ 0 0
BuBub=- | 250

107

107

107

107

95
50

17
50

17
31

17
14




Solving Ux = c also solves Ax = b

Same solutions before and after each row operation!

x is a subtract ¢-(Row i) from (Row j) T': matrix of the
solution or exchange rows ¢ and j row operation
before: Ax=Db — TAx="Tb
~— ~— ~
T dot A I b/
A b
= = undo!
T'A'x =T'b = Ax=Db": xisa
T’: matrix of the add c-(Row i) to (Row j) solution
row operation or exchange rows ¢ and j after

Also holds if A is non-square.
Special case: b=0 (= b’ =Tb =0): Ax=0 < Ax=0

(In)dependence of columns is preserved

The columns of Thereisx # 0 o Thereisx # 0 The columns of
A are dependent such that Ax =0 such that A’x =0 A’ are dependent

Ugly case in step j = the first j columns are dependent

find
(1 2 3] 0] | equation | substitution | solution
anything goes!
j =3 8 E)l g T1 B 8 row 3 Oxs3 =0 %;f.‘i ig4
T2 = row 2 Adzo + 51053 =0 429 +20=0 | 29 = =5
Do L3 : row 1 |z + 225+ 323 =0 r1+2=0|2,=-2
000 2% |0

Also true in the original matrix A, because (in)dependence of columns is preserved.

2.1.3 Elimination succeeds < the columns of A are independent

Elimination (allowing row exchanges) succeeds: Elimination fails:
= U has nonzero diagonal elements (pivots). — The columns of some
intermediate  matrix
are dependent (ugly
case)

= Every column of U is independent from the
previous ones.

= The columns of U are independent (1.3.3).
= The columns of A are
= The columns of A are independent (2.1.2). dependent. (2.1.2).

15



2.2 Elimination Matrices and Inverse Matrices

Elimination:
do!
2 3 4 — 2 3 4
A= 14 11 14 U=10 5 6
2 8 17 — 00 7
undo!

E E-1
— —~
EyWEyEyy A=U  Ey:do! E;'iundol A= Ey'Ey'ER' U

subtract 2:-(Row 1) from (Row 2) add 2-(Row 1) to (Row 2) T
subtract 1-(Row 1) from (Row 3) add 1-(Row 1) to (Row 3)
subtract 1-(Row 2) from (Row 3) add 1-(Row 2) to (Row 3)

An n x n matrix M is invertible if there is an n x n matrix M ! (the inverse of M) such
that

10
01 M- ... : dosomething!
MM t*=M'M=1 I = M~'.. .. . undoit!
I-... : donothing!

There can only be one inverse: If M X =Y M = I, then X =Y, because

X=IX=YMX = Y(MX)=YI=Y.
T
associativity (1.4.1)

Casel x 1: M = [x] , M= [ﬂ (if = # 0).
Case 2 x 2:

_|a b -1 1 d —b . -
M—L d]a M _ad—bc{—c a] (if ad — be # 0)

2.2.1 The Inverse Theorem

Casen x n:
A is invertible (1)
=
For every b € R", Ax = b has a unique solution x  (ii)
54
the colunns of A are independent (iii)

16



Proof:
(i) = (ii): if A is invertible, then
e A 'bsolves Ax = b: A(A7'b) = (AAHYb=Ib =b.
e Uniqueness: If Ax = b, then x = A™'b: A7b = A1 (Ax) = (A M A)x = Ix =x.
(ii) = (iii): if Ax = 0 has a unique solution (0), the columns of A are independent (I.3.3).

(iii) = (ii): If the columns of A are independent, elimination succeeds (2.1.3): Ax = b &
Ux = c (and U has nonzero diagonal elements). Back substitution: unique solution x.

(ii) = (i): If Ax = b has a unique solution for all b, we find vy, vs, ..., v, such that
0 0 10 -+ 0
0 1 0 | | 01 --- 0
Avlz . 7AV2: . 7-~-7Avn: . = A Vi Vg - Vo | = . . . .
0 0 1 N | ~— | 00 --- 1
—~ -~ B ~— .
e e en I

So AB = I. Still need BA = I to conclude that B = A~ ":
o Al =]A = (AB)A = A(BA), hence A(I — BA) = 0 by distributivity (1.4.1).
e Columns of I — BA: wy,wa,...,w,. Then Aw; = 0 for all i.

e The columns of A are independent by (ii) = (iii). Hence w; = O foralli. So I — BA =
0, meaning BA = I.

For any two n x n matrices A, B: If AB = I, then BA = I (Exercise).

2.2.2 The inverse of a product AB

If A and B are n x n and invertible, then AB is also invertible, and
(AB)' = B'A7'. ("undo” works in reverse order of “do”)

Proof: (AB)(B-'A™Y) = A(BB~)A™ = AIA™ = AA™' = [.
Works for more matrices: (ABC)™' = C~'B~ 1AL

2.3 Matrix Computations and A = LU

2.3.1 The cost of elimination

How many operations (-, /, +, —) are needed to solve Ax = b?

17



Elimination in step j.

Subtract /;;- (Row j) from (Row ¢):

matrix number of entries right-hand side
U11 €1
0 U2 C2
0 0 C3
rowj | 0 0 uj; Ujp [ n—7+1 I =g
TOW 1 0 0 *ij *in | n—7+1 1 =%
for one i fori=j5+1,...,n
op. where? A—=U |b—c A—=U b—c

[ | s =i fugy L (n—J) |

jr=Ly Rowyj) | (n—j+1) | 1 |J(n=j)n—j+1)]|({n—j)

— | Rowi)—r |(n=-g+1)| 1 [O-grn-j+1)]({n-7)
Elimination in all steps j = 1,...,n — 1. Apply known formulas (sum of the first inte-
gers, sum of the first square numbers):

A—-U:
e Divisions: Z;‘;ll(n —j) =3(n*—n)
e Multiplications / Subtractions: Z;l;ll (n—j)n—7j+1)=3(n®*—n)
b —c:
e Multiplications / Subtractions: Z;‘;ll (n—j)=1(n*—n)

3

2
Roughly 3" operations for A — U and n? for b — c.

Back substitution.
into

Inrow j of Ux = c, substitute the already known valuesof z.+, ..., z,

UjiTi + Ujjp1Ti01 + 0+ UjnTn = €5

and solve for z;:
1

Tj = — (¢ = Ujj41Tj41 =+ * — UjnTn) -
Ujj
op. | foronej | forj=nn—-1,...,1
/ 1 n
| (n=g) [ Y —j) =30 —n)
— | (n—j) [ X —j)=30"—n)

Roughly n? operations.

Solving Ax

2
b (for one or more b’s) takes roughly §n3 operations for A — U, and

roughly 2n? operations per b (b — ¢, back substitution).

18



2.3.2 The great factorization A = LU

Elimination: A — U (upper triangular). Assumption for now: no row exchanges!

Elimination in row i. Subtract ¢;;- (Row j of U) from (Row ¢):

Uy v + finalized (in U)
0 up --- + finalized (in U)
0 O :
rowj [ 0 0 .-+ w; -+ uyy | < finalized (in U)
TOW 1% 0 0 - ) o Kk

Happens insteps j = 1,...,7 — 1. How does (Row i) change in each step?

(Row @) of A initially
— i - (Row 1) of U step 1
— lin - (Row 2)of U step 2

liici - (Rowi—1)of U stepi—1
= (Row i) of U in the end

(Row i) of A is a combination of the first i rows of U. Matrix notation:

(ROW Z) of A= [gzl gig s gi,i—l 10 --- 0] U.
row;rector
1 Up Uiz -+ Uin
by 1 Uz -+ U2
A=
gnl e gn,n—l 1 Unn
L, lower triangular U, upper triangular

In this notation, we omit 0’s above/below the diagonal.

24 Permutations and Transposes

A = LU fails if there are row exchanges. Is there a fix?

Fact: Reordering the rows of a matrix S reorders the rows of SA in the same way:

19



— Wy — — wiA — Example: — Wy — — wAd —

- W2 — — WA — exchange - W1 — — wiA —
A - A =
: : rows 1,2 : :
!
— W, — — w,A — of S — 5 — W, — — w, A —
s SA s S'A

Permutation matrix P: reordering (permutation) of the rows of I.

100 010
PA: permutation of the rows of /A = A. 010 &E 001
Px: permutation of the the entries of x. 001 100

If P, P’ are permutation matrices, then also PP’: reordering twice is another reordering.

There are n! = 1-2---n permutation matrices (n x n), since n things can be ordered in n!
ways:

n! | orderings
171
2 112,21

6 | 123, 132,213,231, 312, 321
24 [ 1234, 1243, . ..

Bl w3

24.1 The PA = LU factorization

Idea: move all row exchanges to the beginning (A — PA), then we can eliminate without
row exchanges (PA = LU).

. . Ej : doall elimination steps in column j
Notation: Pk, ¢ : exchangerows kand /¢
[ — U — Ujj
Example (1 : move row exchange up!): . .
AU PA= LU — o | IRL - —
E1l P25 P25 P25 exchangerows2and 5 : >< :
P25 E1 E1l P34 and thenrows3and4 |— » — — x —
E2 E2 P341 E1 S i i o
P34 P34 E2  E2 Eﬂl lEJ
1 2 3 < move — u — — uj —
W}E’ly'it works: - : 8 : Pt : 8 :
J ; . .
Pk has the same effect as Ej ifk, 0> j. : >< :
— 0 — — 0 —

20



2.4.2 The transpose of A

1 2 3 L
A= + reflection along " \” — AT = {2 5
4 5 6
3 6
T
A
23 (AT)32
row i of A column i of A" Ay = (AT Scalar product:
columnjof A = rowjof AT (AT = A v-w=v'
—
Ixn nx1
Transpose of a product: (AB)" = BTAT
AB <« reflectionalong ”\” — BTAT:
(AB);; (BTAT);
I B I B G N |
Vi Vg Vi = ) u; Up Uy,
| | ' o |
— Wy — N ~~ -~ — Vo /N ~~
N ~— v B —_—— AT
A ij BT ji
Works for more matrices: (ABC)" =C"BTAT.
Transpose of the inverse: (A™!)T = (A7)™!
AATL = T
4
(A—I)TAT — (AA—I)T — [T — T
4

(A1 T is the inverse of AT

Permutation matrix: P~! = P, Rows of P: py,...

Each p; has a single 1 at a different position = p; - p; = 1, p; - p; = 0 for i # ;.

I N |
. PI P p.|| =1y & PP =L
' . |

- pn - N~ -

—————  PT, column picture

P, row picture

-~
Pi'Pj

21
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2.4.3 Symmetric matrices

S is symmetric if S = ST (such S must be square).

2 1 -3
S = 1 4
-3 )

If S is symmetric, then also S~ (if it exists):

(Sfl)T — (ST)fl — Sfl.

For every matrix A, both A" Aand AA" are symmetric:

(ATA)T = AT(AT)T = AT A,

244 Symmetric LU-factorization

Normal elimination step:
subtract 2-(Row 1)

from (Row 2)

Now add this extra step:
subtract 2-(Column 1)
from (Column 2)

The general picture:

D =U(L™")" is upper triangular and symmetric = D is diagonal.

E21
1

U=L"A

(AAT)T = (AT)TAT = 44T,

A=LU
¥ 4

A, symmetric U D= L_lA(LT)_l A=LDL"
f f
| IO B D=U(LY  U=DL"
0 2| & 0 2 1
R/—"(L_l)T N—— — U(L )
U D, diagonal
product of elimination matrices
l
—1
, U= A =
U Lt (exercise)

— U(L—I)T — L—IA(L—1>T

D=LTALY -

22
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Chapter 3

The Four Fundamental Subspaces

3.1 Vector Spaces and Subspaces

3.1.1 Examples of vector spaces

There is more than R?, R?, . ..
Vector space: (abstract) concept of things that we can do with vectors

R? R?,...: examples.
concept number type vector space
things that we ...numbers: calculations! ... vectors: combinations!
can do with. .. a+b, a—b, a-b, alb V+w,c-v
IN (natural numbers) R?
Z (integers) R?
Q (rational numbers) C? (complex vectors)
examples R (real numbers) R?*2 (2 x 2 matrices; A + B, cA )
C (complex numbers) RR® (functions f : R — R)
{0, 1} (bits) {0, 1}" (bit vectors)

We mostly (but not only) care about R? R?, ... and their subspaces.

3.1.2 Subspaces of vector spaces

V: vector space. Subspace: nonempty U C V satisfying: if v, w € U and cis a scalar, then
)v+welU (ii) cv € U.

Every subspace U contains 0: take some u € U, then Ou = 0 € U by (ii).
Smallest subspace: U = {0}. Largest subspace: U = V.
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z z z

=

subspaces: line through 0 plane through 0 not a subspace: misses 0

A subspace of a vector space is itself a vector space.

Two subspaces of V' = R?*%:

Uy: all symmetric matrices {Z d

Us: all diagonal matrices {8 2}

3.1.3 The column space of A
C(A) ={Ax:x € R"}

is a subspace of R™: If v,w € C(A) and c a scalar, then Ax = v and Ay = w for some
x,y € R"™. Hence,

() v+w=Ax+y)ec C(A) (ii)cv:A(\cac_/)EC(A)
ERn €R™

3.1.4 The columns of A span the vector space C'(A)

Span, Basis Example
V': vector space C(4)
S: sequence of vectors in V' the columns of A

Sspans V: V = all combinations of S | the columns span C(A)
S basis of V: S independent, S spans V' | the independent columns: basis of C(A)

S dependent S independent

S spans V/ & ‘> + basis
YA

S doesn’t
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3.2 Computing the Nullspace by Elimination: A = CR

Nullspace of (m x n) matrix A: all solutions of Ax = 0 N 121\ 1 2] [z 0
3 6/)" |3 6]yl |0
N(A) ={x e R": Ax =0} (subspace of R") ]
r+2y=0
If all columns are independent: N(A) = {0} 3z +6y =0 i
“ : ” . . . —t—t—=t—t= T
Computing” a subspace: find a basis of it! ) i
For N(A), we do this by computing A = CR (1.4.2): T=-2y x=—2y
I | .
A= |v, vy V3 V4 V; vy — C= vy v3 (the independent columns)
I | .
i vy =1vy V4 = T'14V1 + T24V3
T T
I rme 0 rig rs 0 77
R = 1 7oy 195 0 797 (how to combine them to get all columns)
R is in reduced row echelon form: Plan:
1 (1) 8 8 8 Transform A to R using (Gauss-Jordan) elim-
1 0 0 ination; we get C' on the way.
0 1 ? Row operations don’t change solutions
e e e3 ey es cee |' Ax=0«< Rx = o, N(A) = N(R)
(standard unit vectors) Read a basis of N(R) off R.
The basis of N(R)
Example: "free variables”
i}
_].203 _].0.131 231’2_ Il_—2—31’2
S e it (3 P e | R S R ]
~ ~ - —— ——— —_———
[T42) I F —F
Two special solutions: set the free variables {Sﬁz] to {1} {U}
Ty 0f’ 1
ever ...1is a combination of the two special
X solu tior}i independent solutions. Since they span I
o N(R), they are a basis.
To To 1 0 1 —2 -3
Ty Ty . O 1 T2 . 1 0
nl | gl T _an ] T a | | ol 2
XT3 Ty 0 1 T4 0 1
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General case: R is (r x n).

x: vector of the r variables for e;, e,, . ..

7e7”

xp: vector of the n — r other variables (free variables)

Rx=Ix;+ Fxp=0 <

n — r special solutions: set the free variables xp to ey, e,, . ..

X7 = —FXF

general | example
rXn 2x4
L2
Xp T4
21
X7 3

» €n—r

every ...is a combination of the n — r special independent
solution. .. solutions. Since they span N(R), they are a basis.
XF XF _ €1 €2 . €n—r
xi | —Fxp T e ( —Fe, ) + (xr): ( —Fe, ) oot (e ( _Fe,_, )

3.2.1 Elimination column by column: the steps from A to R,

Fork=0,1,...,n—1:
k columns done:

k — k + 1 (row operations)

Case 1: only 0’s in blue
(dependent column)

Case 2: some % # 0 in blue
(independent column)

I 0 0 0
10 0
1 0
1

0
0
k + 1 columns done:

I 0 0 0
10 0
1 0
1

*

exchange rows:

1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0
10 1 0 1 0
1 ? 1 1

0 N =

0

— k 4+ 1 columns done

n columns done: R,
I 0 0 0 00
1 0 0 00
1 0 00
1 00
10
1

remove zero rows: R

I 0 0 0 00
1 0 0 00
1 0 00

1 00

10

1

new row operation —

also above pivot—

26

multiply row by 1/x:
T 0 0 0
1 0 0
10
1
1

eliminate in column k£ + 1:

T 0 0 0 0
1 0 0 0
1 0 0
1 0
1
0
0
k 4+ 1 columns done:
I 0 0 0 0
1 0 0 0
1 0 0
1 0
1
0
0




3.2.2 The matrix factorization A = C'R and the nullspace
A — Ry — R gives the same Rasin A = CR (L.4.2):

A=CR elimination A — R,
o | I |
A= |vy vy V3 V4 V; vy — Ro=|e; wy ey Wy W;x Wo
I | I Y R |
i vi=1vy ‘V4 =1rvy + 7’24v3‘ & \W4 =rue; + 7“2492‘
T T i 1
1 s 0 14 rs O 11 1 ro 0 7r4 ri5 0 1y
R = 1 rog 1ro5 0 1o +— Ry= Lo ms 00 7
o
0
T24
x=|—1|: |vy=ruv,+ 7‘24V3‘ & Ax =0 Ryx=0 & |wy =rue + 7“24e2‘ (%)
0
0
. O_

3.3 The Complete Solution to Ax =b

As in (2.1.2), apply row operations also to b (A — Ry,b — c¢). Solutions don’t change:

Rx = d .
0 — « If some x # 0, no solution!
Ax=b & Rx=c & S € | Otherwise, solve
0 = %
Rx=Ix+Fxp=d < x;=d-—Fxp
Ax =0 & Rx=0
Particular solution: set the free variables x5 to 0
every ...1is a particular solution of Rx = d, plus a
solution. .. combination of the n — r special solutions of Rx = 0
Xp Xp 0 e € o €,_r
X1 d- Fxp B d * (XF)l ( —Fe > - (XF)2 ( —Fe, ) - " (XF)”_T ( —Fe, )

particular solution
Ax =0 o combination of special solutions
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3.3.1 Number of solutions of Ax =b

rank (number of independent columns) =7r |r <n
\ 4
Ax=b — Ryx=c¢ — Rx=d r <min(m,n)  full rank: 7 = min(m,n)
T T T T
(m xn) (m xn) (r xmn) r<m
R r=n r<n
0 (full rank) (dependent columns)
invertible underdetermined
~
£ g :
s < free variables
-8
1 solution oo many solutions
overdetermined
»
= 2
© .
Y <« free variables
[
]
X
0 or 1 solution | 0 or oo many solutions
depending on c (if some x # 0, then 0)

3.4 Independence, Basis, and Dimension

V': vector space

S: sequence of
vectorsin V'

independent basis of V spans V

e, ey, ..., e, (columns of [): standard basis of R".

The columns of any invertible n x n matrix A are a basis of R". They are independent and
spanning: for every b € R", Ax = b has a solution (2.2.1).

If vi,vs,..., v, is abasis of V, then every v € V is a unique combination.
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Proof: if v =a,vi + -+ -+ a,v, =byvi+ -+ b,v,, then 0 = (a — by) vy + - - + (@, — by) vy,
By independence, a; — by = --- =a, — b, = 0.

Every basis of V' has the same number of vectors.
This number is the dimension dim(V") of V.

Proof (by contradiction):
Suppose there is a basis v, v, ..., v, and a larger basis w;, ws, ...
V' = each w; is a combination of the v;’s:

,Wy,,. A basis spans

Wj = %V -+ * Vo 4+ .4 * Vm
{ { {
vector x; with m numbers
Matrix notation:
| |
[Wl W3 Wn} = [Vl Va Vm] X1 X2 Xn
;Y ~ | |
X,;an

rank(X) < min(m,n) = m < n, so the columns of X are dependent (3.3.1): there is ¢ # 0
such that Xc = 0. Then Bc = AXc=A40=0 & c;w; +cowy + -+ +¢,w,, = 0, so the
w,’s are dependent and not a basis. Contradiction!

Works for all vector spaces, not only (subspaces of) R": consider A, B as 1 x m, 1 x n with
vector entries (column vectors, or other objects).

3.4.1 Bases (for Matrix Spaces)
vector space basis dimension
R" €e,e,...,e, n
. a b 1 0] [0 1] [o 0] [0
all 2 x 2 matrices L d} 0 o] {O O} , L O} (o 4
: . fa 0 [1 0] [0
diagonal matrices {0 d] 0 o 0 2
symmetric matrices | b e N + 0-0p 0 3
Y b d | |0 of [0 of [t o]0
{0} 0 (empty set) 0

There are no independent vectors in {0}, so the basis must be empty. 0 is a combination

of ) (sum of nothing = 0).
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3.5 Dimensions of the Four Subspaces

A: m X n matrix (m rows, n columns).
This section:

subspace of | definition dimension
C(4) R™ | combinations of the columns of A r = rank(A)
R(A) = C(AT) | R* | combinations of the rows of A = columns of A" | »

N(A) R™ | solutions of Ax =0 n—r
N(AT) R™ | solutions of ATy =0 m—r

Row space R(A4) = C(AT)

Gauss-Jordan: A — R, by row operations:
e subtract ¢-(Row i) from (Row j)
e exchange (Row 7) and (Row j)

e multiply (Row ¢) with ¢ # 0

Exercise: Row operations don’t change the row space! R(A) = R(Ry).
L ? 8 8 8 8 r independent rows that span the row space:
1 0 00 basis of R(Ry)
Ro: 1 00
i dim(R(A)) = dim(R(Ro)) = r
Z€ero rows

e e N e,
For every matrix: Number of independent rows = number of independent columns!
We knew this for rank-1 matrices (r = 1): (1.3.4)

Nullspace N(A)

Gauss-Jordan: A — Ry — R (remove zero rows of Ry).
Row operations don’t change the nullspace (2.1.2):

Ax=0 Rx=0 Rx=0 N(A) = N(R).
Already found a basis of N(R) with n — r vectors (3.2). dim(N(A)) =n —r.
Left nullspace N(AT)

As previously shown for every matrix: dim(nullspace) = number of columns — rank.
Apply thisto A™: dimN(AT) =m — dim(C(A")) =m —r.
Why “left”? : all solutions of Ay = 0 = all solutionsof y' A =0".
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Chapter 4

Orthogonality

4.1 Orthogonality of vectors and subspaces
Recall (1.2.3)[2.4.2): v,w € R" are perpendicular or orthogonal if v-w = v'w = 0.

[-rafe N

- -
VW vIiw

Two subspaces V' and W of R™ are orthogonal if v-w =0 forallve Vand allw € W.

Y ) Y
w w W
. ~—+» — T
V V
2 A/ 14
If Aism x n:
Y
e N(A)and R(A) = C(A") are orthogonal in R™. 1 2]
1 2
e N(A")and R(A") = C(A) are orthogonal in R™. R ({3 6}) T
Proof. v.e N(A) & Av = 0. weCAN) ew=ATx
Then y
viw=v'(ATx) (vTAT)x B2 (4v)Tx = 0. N (B ED i
i A T
(13.2]) #
Same for N(A") and C(A4). -2 T = -2y

31



Exercise: If V and W are orthogonal, VN W = {0} (only the zero vector is in both).

If V and W are subspaces of R" such that V N W = {0}, Yy
then dim (V') + dim(W) < n.

w
Proof. Let k = dim(V), ¢ = dim(W), vy, ..., v, a basis of V,
Wi, ..., Wy a basis of W. Want to show: these k + ¢ vectors
are independent. .
Suppose cvi+ -+ vy +diwy +---dywy = 0. Then
vev WEW (—weW) z / 174
v=-weVnW,sov=w=0.vq,...,vyand wq, ..., wy
are independent = ¢,...,¢, = 0and dy,...,d; = 0 =

Vi,...,Vk, Wi,..., W are independent (1.3.3) = k£ + ¢ < n. dim(V) =2, dim(W) =1

4.1.1 Orthogonal complement V*

V subspace of R".
Definition: w € R" is orthogonal to V' if w is orthogonal to all vectors in V.
V=+: all vectors in R" that are orthogonal to V. Exercise: V* is a subspace.

Let V, W be orthogonal subspaces of R". The following statements are equivalent.

V = N(4), W = R(4) = C(4)
O W=Vv2 true Yow
u
(i) dim(V)+dim(W)=n true: (n —7r)+r=mn N\|dw
P A ——— Z’

(iii) every u € R" can be written | true 1%

as u = v + w with unique

vectorsve V,we W

Proof: vy,...,vyabasisof V, wy,..., wy abasis of IV.
(i)=-(ii): Observation: w € R" orthogonal to V' < w orthogonal to vy,...,v;. Let A be
the matrix with rows vy,..., vy Then V = C(A") (dimension k) and W = V+ = N(A)
(dimension n — k,[3.5).
(ii)=(iii): As previously seen, vy, ..., Vi, Wy,..., W, are independent. Since £+ ¢ = n, they
are a basis of R". So

u:glvl+"‘+Cka+£i1W1+"'dig

v~
v w

with unique scalars (3.4) = unique v, w.

(iii)=(i): We need that W contains all vectors orthogonal to V. Let u € R" be orthogonal
to V. We can write u = v + w with v € V, w € IW. Multiplying with v from the left,

vu=vv+vw = vv=|v[=0 = v=0 = u=wcW
0 0
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4.1.2 The big picture

]RTH
b 0
C(A) —v ,

R(4)=C(A")

AXyow AXAXnu” N(AT)

------- " Ax=b

Xrow 1 X
0 < N(A): Ax=0
Rn
(B.3): Solutions of Az =0 = particular solution of Ax =b + solutions of Ax =0

@.1): N(A)and C(AT), N(A") and C(A) are orthogonal subspaces. ..

(4.1.1): ...and orthogonal complements. For x € R™ x = X, + Xpu (row space and
nullspace components). If Ax = b, then Ax,,, = b, Ax,,; = 0.
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Index

N (natural numbers), [
R (real numbers),
0 (zero vector),

associativity
matrix multiplication,

back substitution,
basis
of a vector space,

Cauchy-Schwarz inequality,
collinear vectors, 6]
column space

of a matrix, [9]
combination

of two vectors,

several vectors, [f]
coplanar vectors, [f]
cosine formula,

CR factorization,
dependent vectors,
diagonal magtrix,
dimension

of a vector space,
dot product, 7]
elimination

cost,

failure,

Gauss,

Gauss-Jordan,

pivot, [14]

success,

elimination matrix,

factorization

CR,

LU, [19
free variables

of nullspace,
full rank matrix,

Gauss elimination,
Gauss-Jordan elimination,

hyperplane,
normal vector,

identity matrix,
independent vectors, 6]
inner product, 7]
intersecting lines,
inverse
of permutation matrix,
inverse matrix, [16]
of a product,
invertible matrix,
characterization,

left nullspace
of a matrix,

length
of a vector, [7]

line,

linear combination,
of two vectors,
several vectors, [6]

linear equation system,
back substitution,
complete solution,
Gauss elimination,
number of solutions,
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overdetermined,

row exchange,

row operation, [14]

underdetermined,
linearly dependent vectors,
linearly independent vectors,
lower triangular matrix,
LU-factorization,

symmetric, 22]

with row exchanges,

matrix,
column picture, [
column space, [9]
diagonal,
elimination,
full rank,
identity,
inverse, [16]
invertible,
left nullspace,
lower triangular,
nullspace,

free variables,

permutation, 14} [20]
rank,
rank 1,
reduced row echelon form,

row picture, [J]

row space, [I]]
square, [§]
symmetric, {8 [22]
transpose, 21]
upper triangular,
zero,
matrix multiplication,
associativity, [12]
matrix notation, [6]
matrix space, 29
matrix-vector multiplication, [
multiplication
matrix-matrix, [T1]
matrix-vector, 9]

number-matrix,
number-vector,
vector-matrix, [12]
vector-vector
dot product,
inner product, 7]
outer product,
scalar product, [7]

normal vector,
nullspace
free variables,
of a matrix,

orthogonal complement,
orthogonal subspaces,
dimensions,
orthogonal vectors,
outer product,
overdetermined linear equation system,

parallelogram,
permutation matrix, 14, [20]

inverse, 21]
perpendicular vectors, [7]
pivot, [14]

plane,
Pythagoras,
rank

of a matrix,

rank-1 matrix,

reduced row echelon form
of a matrix,

row exchange,

row operation, [14]

row space

of a matrix,

scalar,

scalar multiplication,
scalar product,

span, 9]

spanning vectors
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of a vector space, scalar product,
square matrix, [§] span, 9]
standard unit vector, [7]

1 Q

subspace, zero matr1x,
A

subspaces zero vector,

orthogonal,

symmetric

LU-factorization,
symmetric matrix, [§} 22]
system of linear equations,

transpose
of a matrix,
of a product,
of the inverse,
triangle inequality,

underdetermined linear equation system,
unit vector, [/

standard, [7]
upper triangular matrix,

vector
in R", 4
length,
vector addition,
vector space
basis,

concept, @
dimension,

spanning vectors, [24]

subspace,
vector-matrix multiplication,
vectors

(linearly) dependent,
(linearly) independent,
collinear, [6]

coplanar, 6]

dot product, 7]
independent, [6]

inner product,

orthogonal, [7]
outer product,

perpendicular, 7]
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