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Linear equations vs. Linear inequalities

Problem: Solve Ax = b!

Algorithm: Gauss-Jordan elimination (A = CR).

Problem: Solve Ax ≤ b!

Example:
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

A =


−1 0

0 −1
−1 1

1 6
4 −1

 , b =


0
0
1

15
10


This is called Linear Programming and has many important applications [MG07].

Algorithm: ?
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The solution space (subset of R2)

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

Intersection of five
halfplanes

Halfplane: everything
on one side of a line,
including the line

.
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The solution space (subset of R3)

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

0 ≤ x3 ≤ 1

Unit cube
Intersection of six halfspaces
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The solution space (subset of R3)

0 ≤ x1 ≤ 1

1
3x1 ≤ x2 ≤ 1− 1

3x1

1
3x2 ≤ x3 ≤ 1− 1

3x2

Klee-Minty Cube
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The solution space (subset of Rn)

A an m × n matrix, b ∈ Rm

Solutions of Ax ≤ b: intersection of m halfspaces in Rn, a convex polyhedron

R2

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

Convex polygon

R3

Convex polyhedron

Rn

Beast
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Linear inequalities, geometrically

Problem, algebraically: Solve Ax ≤ b!

Problem, geometrically: Find a point in a convex polyhedron, or conclude that it is
empty!

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≥ 10

x1 + 6x2 ≤ 15

x 2
−
x 1
≥
1

point in convex polyhedron = solution convex polyhedron empty, no solution
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Finding a point in a convex polyhedron. . .
. . . is “the same” as finding a corner.1

If we have a corner, we have a point, and if we have a point, we can easily find a
corner (walk until we hit a wall, walk inside the wall until we hit another wall,. . . )

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

1For this, we need to assume that the convex polyhedron is bounded, but this is no problem.
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Solving Ax ≤ b
Consider the inequalities

Ax + xn+1 ·


1
1
...
1

 ≤ b, xn+1 ≤ 0.

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

I The corresponding convex polyhedron is nonempty, and a point in it can be found
easily (set x = 0 and make xn+1 small enough).

I From this point, find a corner, as described before.

I From this corner, “climb up” along edges to the highest corner (= highest
point, the one with largest xn+1-value).

I If the highest corner has xn+1 = 0, we have solved Ax ≤ b, otherwise, Ax ≤ b has
no solution.

This is George Dantzig’s simplex method from the 1940’s [Dan63].
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Depending on the climbing rule, the simplex method. . .

. . . can be very fast. . . . . . or very slow.

n-dimensional Klee-Minty cube: a natural climbing rule visits all 2n corners [KM72].
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Simplex method = “Gauss elimination for linear inequalities”

I Extremely fast in practice

I But: For every climbing rule that people have developed, there are (artificially
constructed) beasts on which climbing takes very long when this rule is used.

Open problem: Is there a climbing rule which climbs every beast quickly?

A positive answer would solve Smale’s 9th problem for the 21st century:

https://en.wikipedia.org/wiki/Smale%27s_problems

I There are randomized climbing rules (using coin flips) which are (in expectation)
faster than the known deterministic ones (no coin flips).

I One concrete result here: There is a rule that climbs every n-dimensional cube in
at most e2

√
n steps in expectation (much better than the worst case 2n) [Gär02].
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