Linear Algebra
 ETH Zürich, HS 2023, 401-0131-00L
 Linear Programming

Bernd Gärtner

December 22, 2023

Linear equations vs. Linear inequalities

Problem: Solve $A \mathbf{x}=\mathbf{b}$!
Algorithm: Gauss-Jordan elimination $(A=C R)$.
Problem: Solve $A \mathbf{x} \leq \mathbf{b}$!
Example:

$$
\begin{aligned}
x_{1} & \geq 0 \\
x_{2} & \geq 0 \\
x_{2}-x_{1} & \leq 1 \\
x_{1}+6 x_{2} & \leq 15 \\
4 x_{1}-x_{2} & \leq 10
\end{aligned}
$$

$$
A=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1 \\
-1 & 1 \\
1 & 6 \\
4 & -1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
0 \\
0 \\
1 \\
15 \\
10
\end{array}\right]
$$

This is called Linear Programming and has many important applications [MG07].
Algorithm: ?

The solution space (subset of \mathbb{R}^{2})

Intersection of five halfplanes

Halfplane: everything on one side of a line, including the line

The solution space (subset of \mathbb{R}^{3})

$$
\begin{aligned}
& 0 \leq x_{1} \leq 1 \\
& 0 \leq x_{2} \leq 1 \\
& 0 \leq x_{3} \leq 1
\end{aligned}
$$

Intersection of six halfspaces

Unit cube

The solution space (subset of \mathbb{R}^{3})

$$
\begin{aligned}
0 & \leq x_{1} \leq 1 \\
\frac{1}{3} x_{1} & \leq x_{2} \leq 1-\frac{1}{3} x_{1} \\
\frac{1}{3} x_{2} & \leq x_{3} \leq 1-\frac{1}{3} x_{2}
\end{aligned}
$$

Klee-Minty Cube

The solution space (subset of \mathbb{R}^{n})

A an $m \times n$ matrix, $b \in \mathbb{R}^{m}$
Solutions of $A \mathbf{x} \leq \mathbf{b}$: intersection of m halfspaces in \mathbb{R}^{n}, a convex polyhedron

Convex polygon

Convex polyhedron

Beast

Linear inequalities, geometrically

Problem, algebraically: Solve $A \mathbf{x} \leq \mathbf{b}$!
Problem, geometrically: Find a point in a convex polyhedron, or conclude that it is empty!

point in convex polyhedron $=$ solution

convex polyhedron empty, no solution

Finding a point in a convex polyhedron...

\ldots is "the same" as finding a corner. ${ }^{1}$
If we have a corner, we have a point, and if we have a point, we can easily find a corner (walk until we hit a wall, walk inside the wall until we hit another wall,...)

[^0]
Solving $A \mathbf{x} \leq \mathbf{b}$

Consider the inequalities

$$
A \mathbf{x}+x_{n+1} \cdot\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] \leq \mathbf{b}, \quad x_{n+1} \leq 0
$$

- The corresponding convex polyhedron is nonempty, and a point in it can be found easily (set $\mathbf{x}=\mathbf{0}$ and make x_{n+1} small enough).
- From this point, find a corner, as described before.
- From this corner, "climb up" along edges to the highest corner (= highest point, the one with largest x_{n+1}-value).
- If the highest corner has $x_{n+1}=0$, we have solved $A \mathbf{x} \leq \mathbf{b}$, otherwise, $A \mathbf{x} \leq \mathbf{b}$ has no solution.
This is George Dantzig's simplex method from the 1940's [Dan63].

Depending on the climbing rule, the simplex method...

... can be very fast. . .

... or very slow.
n-dimensional Klee-Minty cube: a natural climbing rule visits all 2^{n} corners [KM72].

Simplex method $=$ "Gauss elimination for linear inequalities"

- Extremely fast in practice
- But: For every climbing rule that people have developed, there are (artificially constructed) beasts on which climbing takes very long when this rule is used.

Open problem: Is there a climbing rule which climbs every beast quickly?
A positive answer would solve Smale's 9th problem for the 21st century:
https://en.wikipedia.org/wiki/Smale\'s_problems

- There are randomized climbing rules (using coin flips) which are (in expectation) faster than the known deterministic ones (no coin flips).
- One concrete result here: There is a rule that climbs every n-dimensional cube in at most $e^{2 \sqrt{n}}$ steps in expectation (much better than the worst case 2^{n}) [Gär02].

References

目 G．B．Dantzig．
Linear Programming and Extensions．
Princeton University Press，Princeton，NJ， 1963.
睲 B．Gärtner．
The Random－Facet simplex algorithm on combinatorial cubes．
Random Structures \＆Algorithms，20（3）， 2002.
https：／／doi．org／10．1002／rsa． 10034.
固 V．Klee and G．J．Minty．
How good is the simplex algorithm？
In O．Shisha，editor，Inequalities III，pages 159－175．Academic Press， 1972.
嗇 J．Matoušek and B．Gärtner．
Understanding and Using Linear Programming．
Springer， 2007.
https：／／doi．org／10．1007／978－3－540－30717－4．

[^0]: ${ }^{1}$ For this, we need to assume that the convex polyhedron is bounded, but this is no problem.

