Linear Algebra ETH Zürich, HS 2023, 401-0131-00L

Linear Programming

Bernd Gärtner

December 22, 2023

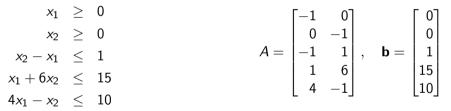
Linear equations vs. Linear inequalities

Problem: Solve $A\mathbf{x} = \mathbf{b}!$

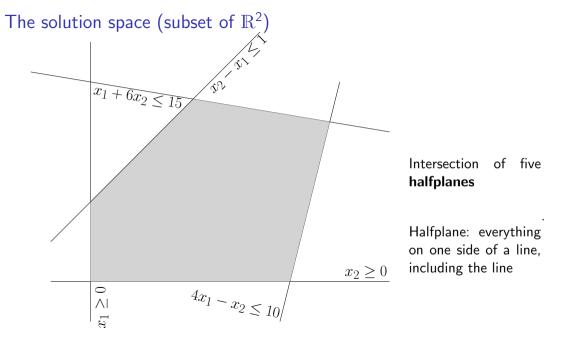
Algorithm: Gauss-Jordan elimination (A = CR).

Problem: Solve $Ax \leq b!$

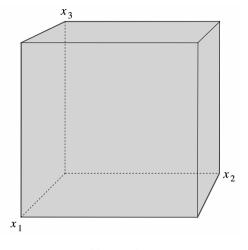
Example:



This is called **Linear Programming** and has many important applications [MG07]. **Algorithm:** ?

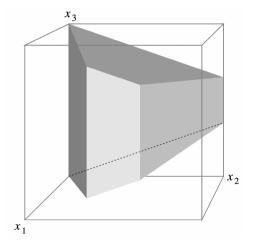


The solution space (subset of \mathbb{R}^3)



Intersection of six halfspaces

The solution space (subset of \mathbb{R}^3)

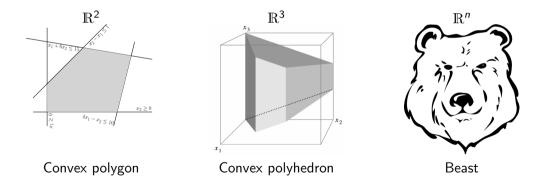


Klee-Minty Cube

The solution space (subset of \mathbb{R}^n)

A an $m \times n$ matrix, $b \in \mathbb{R}^m$

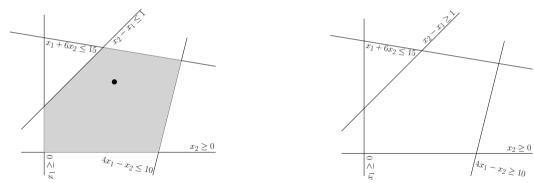
Solutions of $A\mathbf{x} \leq \mathbf{b}$: intersection of *m* halfspaces in \mathbb{R}^n , a **convex polyhedron**



Linear inequalities, geometrically

Problem, algebraically: Solve $Ax \le b!$

Problem, geometrically: Find a point in a convex polyhedron, or conclude that it is empty!



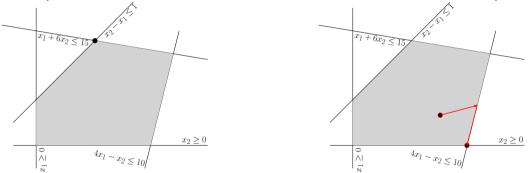
point in convex polyhedron = solution

convex polyhedron empty, no solution

Finding a point in a convex polyhedron...

 \ldots is "the same" as finding a corner.¹

If we have a corner, we have a point, and if we have a point, we can easily find a corner (walk until we hit a wall, walk inside the wall until we hit another wall,...)

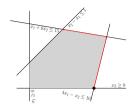


¹For this, we need to assume that the convex polyhedron is bounded, but this is no problem.

Solving $A\mathbf{x} \leq \mathbf{b}$

Consider the inequalities

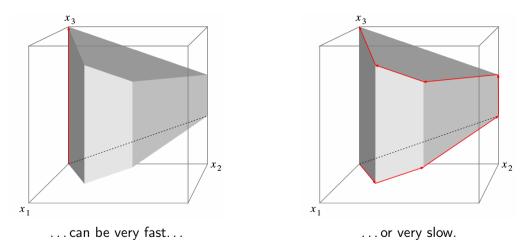
$$A\mathbf{x} + x_{n+1} \cdot \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \vdots \\ \mathbf{1} \end{bmatrix} \leq \mathbf{b}, \quad x_{n+1} \leq \mathbf{0}.$$



- The corresponding convex polyhedron is nonempty, and a point in it can be found easily (set $\mathbf{x} = \mathbf{0}$ and make x_{n+1} small enough).
- From this point, find a corner, as described before.
- From this corner, "climb up" along edges to the highest corner (= highest point, the one with largest x_{n+1} -value).
- ▶ If the highest corner has $x_{n+1} = 0$, we have solved $A\mathbf{x} \leq \mathbf{b}$, otherwise, $A\mathbf{x} \leq \mathbf{b}$ has no solution.

This is George Dantzig's simplex method from the 1940's [Dan63].

Depending on the climbing rule, the simplex method...



n-dimensional Klee-Minty cube: a natural climbing rule visits all 2^n corners [KM72].

Simplex method = "Gauss elimination for linear inequalities"

- Extremely fast in practice
- But: For every climbing rule that people have developed, there are (artificially constructed) beasts on which climbing takes very long when this rule is used.

Open problem: Is there a climbing rule which climbs every beast quickly?

A positive answer would solve Smale's 9th problem for the 21st century:

https://en.wikipedia.org/wiki/Smale%27s_problems

- There are randomized climbing rules (using coin flips) which are (in expectation) faster than the known deterministic ones (no coin flips).
- One concrete result here: There is a rule that climbs every *n*-dimensional cube in at most $e^{2\sqrt{n}}$ steps in expectation (much better than the worst case 2^n) [Gär02].

References

G. B. Dantzig. *Linear Programming and Extensions*. Princeton University Press, Princeton, NJ, 1963.

B. Gärtner.

The Random-Facet simplex algorithm on combinatorial cubes. Random Structures & Algorithms, 20(3), 2002. https://doi.org/10.1002/rsa.10034.

🔋 V. Klee and G. J. Minty.

How good is the simplex algorithm? In O. Shisha, editor, *Inequalities III*, pages 159–175. Academic Press, 1972.

J. Matoušek and B. Gärtner. Understanding and Using Linear Programming. Springer, 2007. https://doi.org/10.1007/978-3-540-30717-4.