# Linear Algebra <br> ETH Zürich, HS 2023, 401-0131-00L <br> The Computer Science Lens <br> The Generalized Associative Law 

Bernd Gärtner

September 29, 2023

## Generalized Associativity

"Normal" associativity: For matrices $A, B, C$ (of dimensions such that the multiplications are defined),

$$
A(B C)=(A B) C
$$

Knowing this, we can simply talk about the product of 3 matrices and write it as

$$
A B C
$$

It doesn't matter whether we compute this as $A(B C)$, or as $(A B) C$.
What about the product of more matrices? Can we for example simply write

## ABCDEFGH?

Yes, because every way of computing this gives the same result. For example

$$
\underbrace{((((((A B) C) D) E) F) G) H}_{\text {left to right }}=\underbrace{A(B(C(D(E(F(G H))))))}_{\text {right to left }}=\underbrace{((A(B C))((D E) F))(G H)}_{\text {freestyle }} .
$$

Why is this true? There are many proofs [War01]. Here: a computer science proof.

## Brackets and Trees

Using brackets, we say how to compute a product of more than two matrices.

- $(A B) C$ : multiply $A$ and $B$, then multiply the result with $C$ !
- $A(B C)$ : multiply $B$ and $C$, then multiply $A$ with the result!

A different view: computation trees. In computer science, trees grow downwards.


## Computation Trees

Tree nodes:
partial results
Leaves (bottom tree nodes): inputs
Root (top tree node):
final result


## Computation Tree: Rotation

Send a partial result, for example $D E$, left instead of right, or vice versa!


A partial result is affected. . . but unchanged, by normal associativity!


## All computation trees give the same final result!

Proof: Step by step, we can rotate any tree into the "left-to-right" tree, without ever changing the result. Hence, all trees give the same result as the "left-to-right" tree.


## Step-by-step rotation

As long as a partial result can be sent to the left instead of the right, do it!


Nothing more can be sent to the left, we have the "left to right" tree!

## Why was this a "computer science proof"?

- It applies an algorithm.
- If you like, think about how many steps it needs. .
- Trees and rotations are fundamental in Algorithmen und Datenstrukturen.

Disclaimer: The proof is not mathematically formal.

- It nicely shows what is going on, but is incomplete:
- We argued for 6 matrices, but we may have any number of matrices.
- Does a rotation always work as nicely as in the pictures?
- Is "sending left instead of right" guaranteed to stop eventually?
- If it stops, why do we always get the "left-to-right" tree?

There are complete proofs [War01], so it makes sense to focus on the intuition here.

## Application: Fast Fibonacci numbers



Fibonacci numbers at Zürich HB

## Fibonacci numbers

The sequence

|  |  |  | 2 | + | 3 | 5 |  | 13 | + | 21 | $=$ | 34 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | $\ldots$ |  |
| $f_{0}$ | $f_{1}$ | $f_{2}$ | $f_{3}$ | $f_{4}$ | $f_{5}$ | $f_{6}$ | $f_{7}$ | $f_{8}$ | $f_{9}$, | $f_{10}$ | $\ldots$ |  |
|  |  |  | $f_{3}+f_{4}$ | $=$ | $f_{5}$ |  | $f_{7}+f_{8}$ | $=f_{9}$ |  |  |  |  |

Every number is the sum of the previous two.
Mathematical definition:

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2}, \quad \text { if } n \geq 2
\end{aligned}
$$

## The Fibonacci number $f_{100} \ldots$

... is something you always wanted to know!

Here you go (Python):
$\mathrm{a}=0$ \#fo
$\mathrm{b}=1$ \#f1
for $n$ in range (2, 101):
$\mathrm{c}=\mathrm{a}+\mathrm{b} \# \mathrm{f} n$
$\mathrm{a}=\mathrm{b} \quad \# f n-2 \rightarrow f n-1$
$\mathrm{b}=\mathrm{c} \quad \# \mathrm{f} n-1 \rightarrow f n$
print ("f", n, "=", c)

|  | $21=10946$ | $41=165580141$ | $61=2504730781961$ |
| :---: | :---: | :---: | :---: |
| $2=1$ | $22=17711$ | f $42=267914296$ | $62=4052739537881$ |
| $3=2$ | $23=28657$ | $43=433494437$ | $63=6557470319842$ |
| 4 | $24=46368$ | $44=701408733$ | $64=10610209857723$ |
| 5 | $25=75025$ | $45=1134903170$ | $65=17167680177565$ |
|  | $26=121393$ | $46=1836311903$ | $66=27777890035288$ |
| $7=13$ | $27=196418$ | $47=2971215073$ | $67=44945570212853$ |
| $8=21$ | $28=317811$ | $48=4807526976$ | $68=72723460248141$ |
| $9=34$ | $29=514229$ | f $49=7778742049$ | $69=117669030460994$ |
| $10=55$ | $30=832040$ | $50=12586269025$ | $70=190392490709135$ |
| $11=89$ | $31=1346269$ | $51=20365011074$ | $71=$ |
| $12=144$ | $32=2178309$ | $52=32951280099$ | $72=498454011879264$ |
| $13=233$ | $33=3524578$ | $53=53316291173$ | $73=806515533049393$ |
| $14=377$ | $34=5702887$ | f $54=86267571272$ | $74=1304969544928657$ |
| $15=610$ | $35=9227465$ | f $55=139583862445$ | $75=2111485077978050$ |
| $16=987$ | $36=14930352$ | $56=225851433717$ | $76=3416454622906707$ |
| $17=1597$ | $37=24157817$ | f $57=365435296162$ | $77=5527939700884757$ |
| $18=2584$ | $38=39088169$ | f $58=591286729879$ | $78=8944394323791464$ |
| $19=4181$ | $39=63245986$ | f $59=956722026041$ | $79=14472334024676$ |
|  |  |  |  |

f $81=37889062373143906$
f $82=61305790721611591$
f $83=99194853094755497$
f $84=160500643816367088$
f $85=259695496911122585$
f $86=420196140727489673$
f $87=679891637638612258$
f $88=1100087778366101931$
f $89=1779979416004714189$
f $90=2880067194370816120$
f $91=4660046610375530309$
f $92=7540113804746346429$
f $93=12200160415121876738$
f $94=19740274219868223167$
f $95=31940434634990099905$
f $96=51680708854858323072$
f $97=83621143489848422977$
$\mathrm{f} 98=135301852344706746049$
f $99=218922995834555169026$
f $100=354224848179261915075$

$$
f_{100}=354224848179261915075
$$

Let's do it faster. . .
Observation [Mat10]:

$$
\begin{gathered}
{\left[\begin{array}{l}
f_{n-1} \\
f_{n}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]}_{A}\left[\begin{array}{l}
f_{n-2} \\
f_{n-1}
\end{array}\right], \quad \text { if } n \geq 2} \\
{\left[\begin{array}{l}
f_{n-1} \\
f_{n}
\end{array}\right]=} \\
A\left[\begin{array}{l}
f_{n-2} \\
f_{n-1}
\end{array}\right]=A\left(A\left[\begin{array}{l}
f_{n-3} \\
f_{n-2}
\end{array}\right]\right)=\cdots=A\left(\cdots\left(A\left[\begin{array}{l}
f_{0} \\
f_{1}
\end{array}\right]\right) \cdots\right) \\
= \\
\underbrace{A\left(\cdots\left(A\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \cdots\right)}_{n-1 A^{\prime} s}=A^{n-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { (generalized associativity!) }
\end{gathered}
$$

To compute $f_{n}$, we need the matrix $A^{n-1}=\underbrace{A \cdot A \cdots A}_{n-1 \text { times }}$.
Then $f_{n}$ is found in the lower right corner.

Fast powers by iterative squaring

$$
\begin{aligned}
& A^{99}=\left(A^{49}\right)^{2} \cdot A=\left[\begin{array}{lll}
135301852344706746049 & 218922995834555169026 \\
218922995834555169026 & 354224848179261915075
\end{array}\right] \\
& =f_{100} \\
& A^{49}=\left(A^{24}\right)^{2} \cdot A=\left[\begin{array}{rr}
4807526976 & 7778742049 \\
7778742049 & 12586269025
\end{array}\right] \\
& A^{24}=\left(A^{12}\right)^{2} \quad=\left[\begin{array}{ll}
28657 & 46368 \\
46368 & 75025
\end{array}\right] \\
& A^{12}=\left(A^{6}\right)^{2} \quad=\left[\begin{array}{rr}
89 & 144 \\
144 & 233
\end{array}\right] \\
& A^{6}=\left(A^{3}\right)^{2} \quad=\left[\begin{array}{cc}
5 & 8 \\
8 & 13
\end{array}\right] \\
& A^{3}=(A)^{2} \quad \cdot A=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]
\end{aligned}
$$

## References

围 Jiří Matoušek.
Thirty-three Miniatures - Mathematical and Algorithmic Applications of Linear Algebra.
American Mathematical Society, 2010.
https://kam.mff.cuni.cz/~matousek/stml-53-matousek-1.pdf.
圊 William P. Wardlaw.
A generalized general associative law.
Mathematics Magazine, 74(3):230-233, 2001.
https://doi.org/10.1080/0025570X.2001.11953069.

