Linear Algebra ETH Zürich, HS 2023, 401-0131-00L
 Perpendicular Vectors and Zero Scalar Product

Bernd Gärtner

September 27, 2023

Rotating a vector by 90 degrees. . .

...creates a perpendicular vector...

\ldots with swapped x - and y-coordinates, where one coordinate flips its sign.

Why?

This also rotates the triangle with the three sides vector, x - and y-coordinate.
Horizontal side (x-coordinate) and vertical side (y-coordinate) are swapped.
One side changes "sign" (right \leftrightarrow left of y axis, or above \leftrightarrow below x-axis)
Scalar product of original and perpendicular vector is 0 :

$$
\left[\begin{array}{r}
-1 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
1
\end{array}\right]=0 \quad\left[\begin{array}{r}
-1 \\
4
\end{array}\right] \cdot\left(c\left[\begin{array}{l}
4 \\
1
\end{array}\right]\right)=0
$$

Still true if perpendicular vectors have different lengths (scalar product $=0$ only depends on the directions)

