Linear Algebra ETH Zürich, HS 2023, 401-0131-00L

The Computer Science Lens

What is a Vector?

Bernd Gärtner

October 20, 2023

So far...

"A vector is (for now) an element of \mathbb{R}^{n} ."

vectors in \mathbb{R}^2 , drawn as arrows

"For now" means that there are also other kinds of vectors. "An element of \mathbb{R}^{n} " was actually a white lie...

What the Internet thinks a vector is

Oxford Languages:

a quantity having direction as well as magnitude, especially as determining the position of one point in space relative to another.

Chat GPT:

In mathematics, a vector is a quantity that has both magnitude and direction. Vectors are typically represented as an arrow in a Euclidean space, with the length of the arrow indicating the magnitude of the vector, and the direction of the arrow indicating the direction of the vector.

Wikipedia:

In mathematics and physics, vector is a term that refers colloquially to some quantities that cannot be expressed by a single number (a scalar), or to elements of some vector spaces.

What a vector *really* is

Definition

A vector is an element of a vector space.

Definition

A mammal is a vertebrate animal of the class of mammals (Wikipedia).

A vector space is a set together with two operations: vector addition $\mathbf{v} + \mathbf{w}$ and scalar multiplication $c \cdot \mathbf{v}$, each producing another vector.

These operations have to follow some rules (details will follow).

Example

The vector space of polynomials $(x^2 + x + 1, 3x^3, 5x - 2, ...)$.

$$(x^2 + x + 1) + (5x - 2) = x^2 + 6x - 1$$

► 5 ·
$$(x^2 + x + 1) = 5x^2 + 5x + 5$$

Here, the vectors are polynomials, no "magnitude" or "direction" is apparent.

The white lie: \mathbb{R}^n is *not* a vector space...

 \mathbb{R}^2 just contains "raw" pairs of numbers such as (3,2). The *meaning* can vary.

The truth: $(\mathbb{R}^2, +, \cdot)$ is the vector space: this is \mathbb{R}^2 together with the vector addition (+) and scalar multiplication (\cdot) that we have seen.

For that vector space, we use arrow drawings and 2×1 matrix notation $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

Calling this vector space ${\rm I\!R}^2$ is a typical and acceptable "abuse of notation".

Real vector spaces

A real vector space¹ is a triple $(V, +, \cdot)$ where V is a set (the vectors), and

+ : $V \times V \rightarrow V$ a function (vector addition), · : $\mathbb{R} \times V \rightarrow V$ a function (scalar multiplication),

satisfying the following axioms (rules) for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all $c, d \in \mathbb{R}$.

don't learn them by heart 1. v + w = w + vcommutativity 2. u + (v + w) = (u + v) + wassociativity 3. There is a vector **0** such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all \mathbf{v} zero vector 4. There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$ negative vector 5. $1 \cdot \mathbf{v} = \mathbf{v}$ identity element 6. $(c \cdot d)\mathbf{v} = c \cdot (d \cdot \mathbf{v})$ compatibility 7. $c(\mathbf{v} + \mathbf{w}) = c\mathbf{v} + c\mathbf{w}$ distributivity over +8. $(c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}$ distributivity over + in \mathbb{R}

 $^1\,\text{``real''}$ stands for real numbers $c\in\mathbb{R}$ as scalars

Example: The vector space of polynomials

Polynomial (of degree *n*): function of the form $f(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0$

- V : all polynomials $x^2 + x + 1, 3x^3, 5x 2, \dots$
- + : vector addition $(x^2 + x + 1) + (5x 2) = x^2 + 6x 1$
 - : scalar multiplication $5 \cdot (x^2 + x + 1) = 5x^2 + 5x + 5$

Vector space axioms: easy (and boring) to check...

1.
$$\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$$

2.
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

- 3. There is a vector ${\bf 0}$ such that ${\bf v} + {\bf 0} = {\bf v} \text{ for all } {\bf v}$
- 4. There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$ 5. $1 \cdot \mathbf{v} = \mathbf{v}$

6.
$$(c \cdot d)\mathbf{v} = c \cdot (d \cdot \mathbf{v})$$

7.
$$c(\mathbf{v} + \mathbf{w}) = c\mathbf{v} + c\mathbf{w}$$

8. $(c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}$

the zero polynomial f(x) = 0 (degree 0, $c_0 = 0$)

Let's prove some "obvious" facts about real vector spaces (I)

Vector space axioms:

- 1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$
- 2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- 3. There is a vector ${\bf 0}$ such that ${\bf v} + {\bf 0} = {\bf v} \text{ for all } {\bf v}$
- 4. There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- 5. $1 \cdot \mathbf{v} = \mathbf{v}$

6.
$$(c \cdot d)\mathbf{v} = c \cdot (d \cdot \mathbf{v})$$

7.
$$c(\mathbf{v} + \mathbf{w}) = c\mathbf{v} + c\mathbf{w}$$

8.
$$(c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}$$

Lemma

There is only one zero vector.

Proof.

Take two zero vectors $\boldsymbol{0}$ and $\boldsymbol{0}'.$ Then

$$\begin{array}{rcl} {\bf 0}' & = & {\bf 0}' + {\bf 0} & (3. \ {\bf 0} \ {\rm is \ a \ zero \ vector}) \\ & = & {\bf 0} + {\bf 0}' & (1. \ {\rm commutativity}) \\ & = & {\bf 0} & (3. \ {\bf 0}' \ {\rm is \ a \ zero \ vector}) \end{array}$$

So **0** and **0**′ are equal.

Let's prove some "obvious" facts about real vector spaces (II)

Vector space axioms:

- 1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$
- 2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- 3. There is a vector ${\bf 0}$ such that ${\bf v} + {\bf 0} = {\bf v} \text{ for all } {\bf v}$
- 4. There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- 5. $1 \cdot \mathbf{v} = \mathbf{v}$
- 6. $(c \cdot d)\mathbf{v} = c \cdot (d \cdot \mathbf{v})$
- 7. $c(\mathbf{v} + \mathbf{w}) = c\mathbf{v} + c\mathbf{w}$

8.
$$(c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}$$

Lemma

For every vector \mathbf{v} , we have $0 \cdot \mathbf{v} = \mathbf{0}$.

Proof.

$$\begin{array}{rcl} & 0\mathbf{v} \\ = & 0\mathbf{v} + \mathbf{0} & (3. \ \text{zero vector}) \\ = & 0\mathbf{v} + (0\mathbf{v} + (-0\mathbf{v})) & (4. \ \text{negative}) \\ = & (0\mathbf{v} + 0\mathbf{v}) + (-0\mathbf{v}) & (2. \ \text{associativity} \\ = & (0+0)\mathbf{v} + (-0\mathbf{v}) & (8. \ \text{distributivity} \\ = & 0\mathbf{v} + (-0\mathbf{v}) & (\text{rules of } \mathbb{R}) \\ = & \mathbf{0} & (4. \ \text{negative}) \end{array}$$

Let's prove some "obvious" facts about real vector spaces (III)

Vector space axioms:

1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$

2.
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

- 3. There is a vector ${\bf 0}$ such that ${\bf v} + {\bf 0} = {\bf v} \text{ for all } {\bf v}$
- 4. There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- 5. $1 \cdot \mathbf{v} = \mathbf{v}$

6.
$$(c \cdot d)\mathbf{v} = c \cdot (d \cdot \mathbf{v})$$

7.
$$c(\mathbf{v} + \mathbf{w}) = c\mathbf{v} + c\mathbf{w}$$

8.
$$(c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}$$

Lemma

Each **v** has only one negative vector.

Proof.

Take two negative vectors \boldsymbol{u} and \boldsymbol{u}' of $\boldsymbol{v}.$ Then

So \mathbf{u} and \mathbf{u}' are equal.

F-vector spaces – where **F** is a *field* (\mathbb{R} is only one of many fields)

A \mathbb{F} -vector space² is a triple (V, +, \cdot) where V is a set (the vectors), and

+ : $V \times V \rightarrow V$ a function (vector addition), · : $\mathbb{F} \times V \rightarrow V$ a function (scalar multiplication),

satisfying the following *axioms* (rules) for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all $c, d \in \mathbb{F}$.

1. v + w = w + vcommutativity 2. u + (v + w) = (u + v) + wassociativity 3. There is a vector **0** such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all \mathbf{v} zero vector There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$ negative vector 4. 5. $1 \cdot \mathbf{v} = \mathbf{v}$ identity element 6. $(c \cdot d)\mathbf{v} = c \cdot (d \cdot \mathbf{v})$ compatibility 7. $c(\mathbf{v} + \mathbf{w}) = c\mathbf{v} + c\mathbf{w}$ distributivity over + 8. $(c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}$ distributivity over + in \mathbb{F}

 $^{^2}$ "real" stands for real numbers $c\in \mathbb{R}$ as scalars

Fields

A field is a triple $(F, +, \cdot)$ where F is a set (the numbers), and

+ : $F \times F \to F$ a function (addition of two numbers), · : $F \times F \to F$ a function (multiplication of two numbers),

satisfying the following *axioms* (rules) for all $a, b, c \in \mathbb{F}$:

1. a + b = b + acommutativity of +don't learn them by heart! 2. $a \cdot b = b \cdot a$ commutativity of . 3. a + (b + c) = (a + b) + cassociativity of +4. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ associativity of . 5. there is a number 0 such that a + 0 = a for all azero 6. there is a number $1 \neq 0$ such that $a \cdot 1 = a$ for all aone 7. There is a number -a such that a + (-a) = 0negative 8. If $a \neq 0$, there is a number a^{-1} such that $a \cdot a^{-1} = 1$ inverse 9. $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ distributivity

Examples of fields

- ▶ ℝ (real numbers)
- ▶ C (complex numbers)
- Q (rational numbers)

Non-examples:

- ▶ \mathbb{Z} (integers): no inverses
- \blacktriangleright IN (natural numbers): no negatives

Finite fields of prime order (very important in cryptography):

• $\mathbb{F}_p = (\{0, 1, \dots, p-1\}, +, \cdot)$, where p is a prime number.

$$a + b = (\underbrace{a + b}_{+ \text{ in } \mathbb{N}} \mod p \qquad \qquad a \cdot b = (\underbrace{a \cdot b}_{+ \text{ in } \mathbb{N}} \mod p$$

▶ p = 2 : $\mathbb{F}_2 = (\{0, 1\}, +, \cdot)$. The *smallest possible* field (every field has 0 and 1).

$$(a+b) \mod 2: \begin{array}{c|c} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \qquad (a \cdot b) \mod 2: \begin{array}{c|c} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}$$

In all cases, the field axioms have been checked.

The field \mathbb{F}_2 : Calculating with bits (value 0 or 1)

Adding two bits: the logical exclusive or

$$\begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \qquad b_1 + b_2 = \left\{ \begin{array}{ccccc} 1 & \text{if either } b_1 = 1 \text{ or } b_2 = 1 \\ 0 & \text{otherwise} \end{array} \right. = b_1 \text{ XOR } b_2$$

Multiplying two bits: the logical and

$$\begin{array}{c|ccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array} \qquad b_2 \cdot b_2 = \left\{ \begin{array}{cccc} 1 & \text{if } b_1 = 1 \text{ and } b_2 = 1 \\ 0 & \text{otherwise} \end{array} \right. = b_1 \text{ AND } b_2$$

Adding more bits:

$$b_1 + b_2 + \dots + b_n = \begin{cases} 1 & \text{if an odd number of } b_i \text{'s is 1} \\ 0 & \text{if an even number of } b_i \text{'s is 1} \end{cases} \qquad \begin{array}{c} 0 + 1 + 1 + 0 + 1 &= 1 \\ 1 + 0 + 1 + 1 + 1 &= 0 \end{cases}$$

4 mod 2

For every field \mathbb{F} , we have the \mathbb{F} -vector space \mathbb{F}^n (if $\mathbb{F} = \mathbb{R}$, this is \mathbb{R}^n) Vectors: $\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$, where $v_1, v_2, \ldots, v_n \in \mathbb{F}$. Vector addition: Scalar multiplication: $c \cdot \begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{vmatrix} = \begin{vmatrix} c \cdot v_1 \\ c \cdot v_2 \\ \vdots \\ c \cdot tv_n \end{vmatrix}, \quad \text{where } \cdot \text{ is the multiplication in } \mathbb{F}$

Bit vectors: elements of the vector space \mathbb{F}_2^n

 \mathbb{F}_2^n contains 2^n vectors.

Combinations in \mathbb{F}_2^n

$$c_1 \mathbf{v}_1 + \dots + c_i \mathbf{v}_i + \dots + c_n \mathbf{v}_n$$

$$\downarrow$$

$$1 : take \mathbf{v}_i$$

$$0 : don't take \mathbf{v}_i$$

Combinations are just sums of vectors (the ones we take).

Vectors are independent if we can only get $\mathbf{0}$ by taking none of them.

In \mathbb{R}^3 , these three vectors would be independent!

Systems of linear equations in \mathbb{F}^n

Everything we do in \mathbb{R}^n works the same way in \mathbb{F}^n :

- Matrices
- Ax = b and Gauss elimination
- Inverse matrices
- Gauss-Jordan elimination (Chapter 3)
- Full solution of $A\mathbf{x} = \mathbf{b}$ (Chapter 3)

•

Example (\mathbb{F}_2^5) : solve for the bit vector **x**!

$$\begin{bmatrix} 1 & & & \\ 1 & 1 & & \\ 0 & 1 & 1 & \\ 0 & 0 & 1 & 1 & \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Take columns 1, 3, 5

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Application: Game "Lights out!"

 $n \times n$ grid of buttons (original game: 5×5), some are on (yellow):

Pressing a button... switches it (on \leftrightarrow off) and all its neighbors.

Goal: Repeatedly press buttons until all are off!

Lights Out!

Solution

Done after this button!

First solution step, mathematically

_

vector in \mathbb{F}_2^{25}

"button vector" \mathbf{b}_7 in \mathbb{F}_2^{25}

vector in \mathbb{F}_2^{25}

Second solution step, mathematically

vector in \mathbb{F}_2^{25}

"button vector" \mathbf{b}_5 in \mathbb{F}_2^{25}

vector in \mathbb{F}_2^{25}

Lights Out, mathematically

Given a vector $\mathbf{v} \in \mathbb{F}_2^{25}$, produce $\mathbf{0} \in \mathbb{F}_2^{25}$ by adding suitable button vectors! Same problem ("play the game backwards"): starting from $\mathbf{0}$, produce \mathbf{v} by adding suitable button vectors!

No button vector is needed twice $(\mathbf{b}_i + \mathbf{b}_i = \mathbf{0}, \text{ no effect})$.

Order of button vectors doesn't matter (commutativity)!

Lights Out: A system of linear equations in \mathbb{F}_2^{25} ! To win the game with initial configuration $\mathbf{v} \in \mathbb{F}_2^{25}$, solve

$$\mathbf{v} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \cdots x_{25} \mathbf{b}_{25}$$

with all $x_i \in \mathbb{F}_2$ (0 or 1).

This is a system of linear equations with 25 equations in 25 unknowns:

This system has been analyzed [AF98]:

- ▶ The matrix A is quadratic but *not* invertible.
- In Chapter 3, we will learn how to solve systems of equations with non-invertible matrices.
- This allows you to win Lights Out whenever this is possible (it isn't always)!

References

Marlow Anderson and Todd Feil.

Turning lights out with linear algebra.

Mathematics Magazine, 71(4):300-303, 1998. https://doi.org/10.1080/0025570X.1998.11996658.