Linear Algebra
 ETH Zürich, HS 2023, 401-0131-00L
 The Computer Science Lens

What is a Vector?

Bernd Gärtner

October 20, 2023

So far. . .

"A vector is (for now) an element of \mathbb{R}^{n}."

vectors in \mathbb{R}^{2}, drawn as arrows
"For now" means that there are also other kinds of vectors.
"An element of $\mathbb{R}^{n "}$ was actually a white lie...

What the Internet thinks a vector is

Oxford Languages:
a quantity having direction as well as magnitude, especially as determining the position of one point in space relative to another.
Chat GPT:
In mathematics, a vector is a quantity that has both magnitude and direction. Vectors are typically represented as an arrow in a Euclidean space, with the length of the arrow indicating the magnitude of the vector, and the direction of the arrow indicating the direction of the vector.
Wikipedia:
In mathematics and physics, vector is a term that refers colloquially to some quantities that cannot be expressed by a single number (a scalar), or to elements of some vector spaces.

What a vector really is

Definition

A vector is an element of a vector space.

Definition

A mammal is a vertebrate animal of the class of mammals (Wikipedia).

A vector space is a set together with two operations: vector addition $\mathbf{v}+\mathbf{w}$ and scalar multiplication $c \cdot \mathbf{v}$, each producing another vector.

These operations have to follow some rules (details will follow).

Example

The vector space of polynomials $\left(x^{2}+x+1,3 x^{3}, 5 x-2, \ldots\right)$.

- $\left(x^{2}+x+1\right)+(5 x-2)=x^{2}+6 x-1$
- $5 \cdot\left(x^{2}+x+1\right)=5 x^{2}+5 x+5$

Here, the vectors are polynomials, no "magnitude" or "direction" is apparent.

The white lie: \mathbb{R}^{n} is not a vector space. . .
\mathbb{R}^{2} just contains "raw" pairs of numbers such as $(3,2)$. The meaning can vary.

Vector

The truth: $\left(\mathbb{R}^{2},+, \cdot\right)$ is the vector space: this is \mathbb{R}^{2} together with the vector addition $(+)$ and scalar multiplication (\cdot) that we have seen.
For that vector space, we use arrow drawings and 2×1 matrix notation $\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
Calling this vector space \mathbb{R}^{2} is a typical and acceptable "abuse of notation".

Real vector spaces

A real vector space ${ }^{1}$ is a triple $(V,+, \cdot)$ where V is a set (the vectors), and

$$
\begin{aligned}
& +: V \times V \rightarrow V \\
& \cdot \\
& \cdot
\end{aligned}: \mathbb{R} \times V \rightarrow V \text { a function (vector addition), }
$$

satisfying the following axioms (rules) for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all $c, d \in \mathbb{R}$.

1. $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$
2. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
3. There is a vector $\mathbf{0}$ such that $\mathbf{v}+\mathbf{0}=\mathbf{v}$ for all \mathbf{v}
4. There is a vector $-\mathbf{v}$ such that $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$
5. $1 \cdot \mathbf{v}=\mathbf{v}$
6. $(c \cdot d) \mathbf{v}=c \cdot(d \cdot \mathbf{v})$
7. $c(\mathbf{v}+\mathbf{w})=c \mathbf{v}+c \mathbf{w}$
8. $(c+d) \mathbf{v}=c \mathbf{v}+d \mathbf{v}$
commutativity associativity
zero vector negative vector identity element compatibility distributivity over + distributivity over + in \mathbb{R}
[^0]
Example: The vector space of polynomials

Polynomial (of degree n): function of the form $f(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$
V : all polynomials

$$
x^{2}+x+1,3 x^{3}, 5 x-2, \ldots
$$

$$
+: \text { vector addition } \quad\left(x^{2}+x+1\right)+(5 x-2)=x^{2}+6 x-1
$$

- : scalar multiplication $5 \cdot\left(x^{2}+x+1\right)=5 x^{2}+5 x+5$

Vector space axioms: easy (and boring) to check...

1. $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$
2. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
3. There is a vector $\mathbf{0}$ such that
the zero polynomial $f(x)=0\left(\right.$ degree $\left.0, c_{0}=0\right)$ $\mathbf{v}+\mathbf{0}=\mathbf{v}$ for all \mathbf{v}
4. There is a vector $-\mathbf{v}$ such that

$$
\mathbf{v}+(-\mathbf{v})=\mathbf{0}
$$

5. $\mathbf{1} \cdot \mathbf{v}=\mathbf{v}$
6. $(c \cdot d) \mathbf{v}=c \cdot(d \cdot \mathbf{v})$
7. $c(\mathbf{v}+\mathbf{w})=c \mathbf{v}+c \mathbf{w}$
8. $(c+d) \mathbf{v}=c \mathbf{v}+d \mathbf{v}$

Let's prove some "obvious" facts about real vector spaces (I)

Vector space axioms:

1. $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$
2. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
3. There is a vector $\mathbf{0}$ such that $\mathbf{v}+\mathbf{0}=\mathbf{v}$ for all \mathbf{v}
4. There is a vector $-\mathbf{v}$ such that $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$
5. $\mathbf{1} \cdot \mathbf{v}=\mathbf{v}$
6. $(c \cdot d) \mathbf{v}=c \cdot(d \cdot \mathbf{v})$
7. $c(\mathbf{v}+\mathbf{w})=c \mathbf{v}+c \mathbf{w}$
8. $(c+d) \mathbf{v}=c \mathbf{v}+d \mathbf{v}$

Lemma

There is only one zero vector.
Proof.
Take two zero vectors $\mathbf{0}$ and $\mathbf{0}^{\prime}$. Then

$$
\begin{aligned}
\mathbf{0}^{\prime} & =\mathbf{0}^{\prime}+\mathbf{0} & & \text { (3. } \mathbf{0} \text { is a zero vector }) \\
& =\mathbf{0}+\mathbf{0}^{\prime} & & (1 . \text { commutativity }) \\
& =\mathbf{0} & & \left(3 . \mathbf{0}^{\prime} \text { is a zero vector }\right)
\end{aligned}
$$

So $\mathbf{0}$ and $\mathbf{0}^{\prime}$ are equal.

Let's prove some "obvious" facts about real vector spaces (II)

Vector space axioms:

1. $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$
2. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
3. There is a vector $\mathbf{0}$ such that $\mathbf{v}+\mathbf{0}=\mathbf{v}$ for all \mathbf{v}
4. There is a vector $-\mathbf{v}$ such that $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$
5. $\mathbf{1} \cdot \mathbf{v}=\mathbf{v}$
6. $(c \cdot d) \mathbf{v}=c \cdot(d \cdot \mathbf{v})$
7. $c(\mathbf{v}+\mathbf{w})=c \mathbf{v}+c \mathbf{w}$
8. $(c+d) \mathbf{v}=c \mathbf{v}+d \mathbf{v}$

Lemma

For every vector \mathbf{v}, we have $0 \cdot \mathbf{v}=\mathbf{0}$.
Proof.

Let's prove some "obvious" facts about real vector spaces (III)

Lemma

Each v has only one negative vector.

Proof.

Take two negative vectors \mathbf{u} and \mathbf{u}^{\prime} of \mathbf{v}. Then

$$
\begin{aligned}
\mathbf{u}^{\prime} & =\mathbf{u}^{\prime}+\mathbf{0} & & \text { (3. zero vector) } \\
& =\mathbf{u}^{\prime}+(\mathbf{v}+\mathbf{u}) & & \text { (4. } \mathbf{u} \text { is a negative) } \\
& =\left(\mathbf{u}^{\prime}+\mathbf{v}\right)+\mathbf{u} & & (2 . \text { associativity) } \\
& =\left(\mathbf{v}+\mathbf{u}^{\prime}\right)+\mathbf{u} & & (1 . \text { commutativity) } \\
& =\mathbf{0}+\mathbf{u} & & \text { (4. } \left.\mathbf{u}^{\prime} \text { is a negative) }\right) \\
& =\mathbf{u}+\mathbf{0} & & \text { (1. commutativity) } \\
& =\mathbf{u} & & \text { (3. zero vector) }
\end{aligned}
$$

So \mathbf{u} and \mathbf{u}^{\prime} are equal.

\mathbb{F}-vector spaces \quad - where \mathbb{F} is a field $(\mathbb{R}$ is only one of many fields)

A \mathbb{F}-vector space ${ }^{2}$ is a triple $(V,+, \cdot)$ where V is a set (the vectors), and

$$
\begin{aligned}
& +: V \times V \rightarrow V \\
& \cdot \\
& \cdot
\end{aligned}: \mathbb{F} \times V \rightarrow V \text { a function (vector addition), },
$$

satisfying the following axioms (rules) for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all $c, d \in \mathbb{F}$.

1. $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$
2. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
3. There is a vector $\mathbf{0}$ such that $\mathbf{v}+\mathbf{0}=\mathbf{v}$ for all \mathbf{v}
4. There is a vector $-\mathbf{v}$ such that $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$
5. $\mathbf{1} \cdot \mathbf{v}=\mathbf{v}$
6. $(c \cdot d) \mathbf{v}=c \cdot(d \cdot \mathbf{v})$
7. $c(\mathbf{v}+\mathbf{w})=c \mathbf{v}+c \mathbf{w}$
8. $(c+d) \mathbf{v}=c \mathbf{v}+d \mathbf{v}$
commutativity associativity
zero vector
negative vector identity element compatibility distributivity over + distributivity over + in \mathbb{F}
[^1]
Fields

A field is a triple $(F,+, \cdot)$ where F is a set (the numbers), and
$+: F \times F \rightarrow F$ a function (addition of two numbers),
. : $F \times F \rightarrow F$ a function (multiplication of two numbers),
satisfying the following axioms (rules) for all $a, b, c \in \mathbb{F}$:

1. $a+b=b+a$
2. $a \cdot b=b \cdot a$
3. $a+(b+c)=(a+b)+c$
4. $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
5. there is a number 0 such that $a+0=a$ for all a
6. there is a number $1 \neq 0$ such that $a \cdot 1=a$ for all a
7. There is a number $-a$ such that $a+(-a)=0$
commutativity of + commutativity of . associativity of + associativity of . zero
8. If $a \neq 0$, there is a number a^{-1} such that $a \cdot a^{-1}=1$
9. $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
negative inverse distributivity

Examples of fields

- \mathbb{R} (real numbers)
- \mathbb{C} (complex numbers)
- \mathbb{Q} (rational numbers)

Non-examples:

- \mathbb{Z} (integers): no inverses
- \mathbb{N} (natural numbers): no negatives

Finite fields of prime order (very important in cryptography):

- $\mathbb{F}_{p}=(\{0,1, \ldots, p-1\},+, \cdot)$, where p is a prime number.

$$
a+b=(\underbrace{a+b}_{+ \text {in } \mathbb{N}}) \bmod p \quad a \cdot b=(\underbrace{a \cdot b}_{\text {in } \mathbb{N}}) \bmod p
$$

- $p=2: \mathbb{F}_{2}=(\{0,1\},+, \cdot)$. The smallest possible field (every field has 0 and 1).

$$
\begin{array}{lc|cc}
+a+b) \bmod 2: \\
+ & 0 & 0 & 1 \\
1 & 1 & 0
\end{array} \quad(a \cdot b) \bmod 2: \begin{aligned}
& \cdot \\
& \hline 0
\end{aligned} \left\lvert\, \begin{array}{ll}
0 & 1 \\
1 & 0 \\
1
\end{array}\right.
$$

In all cases, the field axioms have been checked.

The field \mathbb{F}_{2} : Calculating with bits (value 0 or 1)

Adding two bits: the logical exclusive or

$$
\begin{array}{l|ll}
+ & 0 & 1 \\
\hline 0 & 0 & 1 \\
1 & 1 & 0
\end{array} \quad b_{1}+b_{2}=\left\{\begin{array}{ll}
1 & \text { if either } b_{1}=1 \text { or } b_{2}=1 \\
0 & \text { otherwise }
\end{array} \quad=b_{1} \text { XOR } b_{2}\right.
$$

Multiplying two bits: the logical and

$$
\begin{array}{l|ll}
\cdot & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 0 & 1
\end{array} \quad b_{2} \cdot b_{2}=\left\{\begin{array}{ll}
1 & \text { if } b_{1}=1 \text { and } b_{2}=1 \\
0 & \text { otherwise }
\end{array} \quad=b_{1} \text { AND } b_{2}\right.
$$

Adding more bits:

$$
b_{1}+b_{2}+\cdots+b_{n}=\left\{\begin{array}{ll}
1 & \text { if an odd number of } b_{i} \text { 's is } 1 \\
0 & \text { if an even number of } b_{i} \text { 's is } 1
\end{array} \begin{array}{l}
0+1+1+0+1=1 \\
1+0+1+1+1=0
\end{array}\right.
$$

For every field \mathbb{F}, we have the \mathbb{F}-vector space \mathbb{F}^{n} (if $\mathbb{F}=\mathbb{R}$, this is \mathbb{R}^{n})
Vectors: $\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$, where $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{F}$.

Vector addition:

$$
\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]+\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right]=\left[\begin{array}{c}
v_{1}+w_{1} \\
v_{2}+w_{2} \\
\vdots \\
v_{n}+w_{n}
\end{array}\right], \quad \text { where }+ \text { is the addition in } \mathbb{F}
$$

Scalar multiplication:

$$
c \cdot\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
c \cdot v_{1} \\
c \cdot v_{2} \\
\vdots \\
c \cdot t v_{n}
\end{array}\right], \quad \text { where } \cdot \text { is the multiplication in } \mathbb{F}
$$

Bit vectors: elements of the vector space \mathbb{F}_{2}^{n}

F_{2}^{n} contains 2^{n} vectors.

"Hamming cube"

Combinations in \mathbb{F}_{2}^{n}

$$
\begin{aligned}
c_{1} \mathbf{v}_{1}+\cdots+ & c_{i} \mathbf{v}_{i}+\cdots+c_{n} \mathbf{v}_{n} \\
& \downarrow \\
& 1: \text { take } \mathbf{v}_{i} \\
& 0: \text { don't take } \mathbf{v}_{i}
\end{aligned}
$$

Combinations are just sums of vectors (the ones we take).
Vectors are independent if we can only get $\mathbf{0}$ by taking none of them.

$$
\underbrace{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}_{\text {dependent }}:\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$\operatorname{In} \mathbb{R}^{3}$, these three vectors would be independent!

Systems of linear equations in \mathbb{F}^{n}

Everything we do in \mathbb{R}^{n} works the same way in \mathbb{F}^{n} :

- Matrices
- $A \mathbf{x}=\mathbf{b}$ and Gauss elimination
- Inverse matrices
- Gauss-Jordan elimination (Chapter 3)
- Full solution of $A \mathbf{x}=\mathbf{b}$ (Chapter 3)

Example $\left(\mathbb{F}_{2}^{5}\right)$: solve for the bit vector \mathbf{x} !
Take columns 1, 3, 5

$$
\left[\begin{array}{lllll}
1 & & & & \\
1 & 1 & & & \\
0 & 1 & 1 & & \\
0 & 0 & 1 & 1 & \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

Application: Game "Lights out!"

$n \times n$ grid of buttons (original game: 5×5), some are on (yellow):

Pressing a button. ..switches it (on \leftrightarrow off) and all its neighbors.
Goal: Repeatedly press buttons until all are off!

Lights Out!

Done after this button!

First solution step, mathematically

vector in \mathbb{F}_{2}^{25}

"button vector" \mathbf{b}_{7} in \mathbb{F}_{2}^{25}

0	1	1	0	1
0	0	1	0	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

vector in \mathbb{F}_{2}^{25}

Second solution step, mathematically

0			1	1
	1	0	1	
0	0	1	0	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

vector in \mathbb{F}_{2}^{25}

| 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | 1

"button vector" \mathbf{b}_{5} in \mathbb{F}_{2}^{25}

0	1	1	1	1	0
	0	1	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	

vector in \mathbb{F}_{2}^{25}

Lights Out, mathematically

Given a vector $\mathbf{v} \in \mathbb{F}_{2}^{25}$, produce $\mathbf{0} \in \mathbb{F}_{2}^{25}$ by adding suitable button vectors!
Same problem ("play the game backwards"): starting from 0, produce \mathbf{v} by adding suitable button vectors!

No button vector is needed twice ($\mathbf{b}_{i}+\mathbf{b}_{i}=\mathbf{0}$, no effect).
Order of button vectors doesn't matter (commutativity)!

Lights Out: A system of linear equations in \mathbb{F}_{2}^{25} !

To win the game with initial configuration $\mathbf{v} \in \mathbb{F}_{2}^{25}$, solve

$$
\mathbf{v}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots x_{25} \mathbf{b}_{25}
$$

with all $x_{i} \in \mathbb{F}_{2}(0$ or 1$)$.
This is a system of linear equations with 25 equations in 25 unknowns:

This system has been analyzed [AF98]:

- The matrix A is quadratic but not invertible.
- In Chapter 3, we will learn how to solve systems of equations with non-invertible matrices.
- This allows you to win Lights Out whenever this is possible (it isn't always)!

References

嗇 Marlow Anderson and Todd Feil.
Turning lights out with linear algebra.
Mathematics Magazine, 71(4):300-303, 1998.
https://doi.org/10.1080/0025570X.1998.11996658.

[^0]: 1 "real" stands for real numbers $c \in \mathbb{R}$ as scalars

[^1]: 2 "real" stands for real numbers $c \in \mathbb{R}$ as scalars

