Linear Algebra 10.11. 2023 Afuns Bandere

* Pleas take a look at the typed lecture notes

Question: What do we do when we have a linear system without solutions?
$\operatorname{lin}_{\substack{\text { syonten }}} A x=b$ but then is $v_{0} x$ sit. $A x=b$.
e.g. too many equations.

Idea: try to find x as close as possible to being a solution.
\rightarrow find x s.t. $A x$ is as close to b as possible.
\hat{x} solution of $\min _{x \in \mathbb{R}^{n}}\|A x-b\|$

$$
\text { (Ain mm xn) }_{\hat{x}}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}\|A x-b\|
$$

what is the set of possible vector $y \in \mathbb{R}^{m}$ sit. $y=A \hat{x}$ far so e $\hat{x} \in \mathbb{R}^{m}$?
It's $C(A)$

$$
\begin{array}{r}
l=a_{1} \hat{x}_{1}+\cdots+a_{n} \hat{x}_{n} \\
A=\left[\begin{array}{ccc}
1 & 1 \\
1 & \cdots & a_{n}
\end{array}\right]
\end{array}
$$

So if \hat{x} is a solution of $\min _{x \in \mathbb{R}^{n}}\left\|A_{x}-b\right\|$ then $p=A \hat{x}$ is the projection of b on $C(A)$

$$
\begin{aligned}
& \|x\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} \\
& \|x\|^{2}=x^{\top} x=x \cdot x=(x, x)
\end{aligned}
$$

the \hat{x} is a solution of the "nor-al equations"

$$
\begin{aligned}
& A^{\top}(b-A \hat{x})=0 \\
& A^{\top} A \hat{x}=A^{\top} b \quad \text { (normal equations) }
\end{aligned}
$$

$*$ if $A^{\top} A$ is invertiges $t h-\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b$
Do
the nor-al equations always have salvias? (even whee $A^{\top} A$ is not invertible)
Yes, because $C\left(A^{\top} A\right)=C\left(A^{\top}\right)$ (prove as HW)
Theorem: for A " $x n$ and $b \in \mathbb{R}^{m}$ a solution \hat{x} of $\min _{x \in \mathbb{R}^{n}} \|(A x-b)$ is also a solution of

$$
x \in \mathbb{R}^{n} A^{\top} A \hat{x}=A^{\top} b \quad \text { (and vice-vensa) }
$$

and if A has ind col the $\hat{X}=\left(A^{\top} A\right) A^{\top} b$.
Linear Regussion:
data points $\left(t_{1}, b_{1}\right),\left(t_{2}, b_{2}\right), \cdots,\left(t_{m}, b_{m}\right)$ (e.g. b_{k} is ten at tie t_{k} in sue experiet)
Let's say we suspect b_{k} has close to a linear depedecy on t_{k}

(\#) $\quad b_{k} \approx \alpha_{0}+\alpha_{1} t_{k}$ for sos $\alpha_{0}, \alpha_{1} \in \mathbb{R}$
idea: find the best fit
(11) $\min _{\alpha_{0}, \alpha_{1}} \sqrt{\sum_{k=1}^{m}\left(b_{k} b_{\text {taydin }}\right.}-\underbrace{\left(\alpha_{0}+\alpha_{i} t_{k}\right)}_{\text {provision" }})^{2})$
(\#) $\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ \vdots \\ b_{m}\end{array}\right] \approx\left[\begin{array}{cc}1 & t_{1} \\ \vdots & t_{2} \\ \vdots & \vdots \\ \vdots & t_{m}\end{array}\right]\left[\begin{array}{c}\alpha_{0} \\ \alpha_{1}\end{array}\right]\left(=\left(\begin{array}{c}\alpha_{0}+\alpha_{1} t_{1} \\ \vdots \\ \vdots \\ \alpha_{0}+\alpha_{1} t_{m}\end{array}\right]\right)$
$\mathbb{R}^{m} \ni b \approx A\left[\begin{array}{l}\alpha_{0} \\ \alpha_{1}\end{array}\right]$ when $A=\left[\begin{array}{ll}\rho & l_{1} \\ \vdots & \vdots \\ i & l_{m}\end{array}\right]$
$(1!) \min _{\alpha_{0}, \alpha_{1}}\left|\left\|b-A\left[\begin{array}{l}\alpha_{0} \\ \alpha_{1}\end{array}\right]\right\|\right|^{2}$
we can solve (!!) by solvi-s

$$
A^{\top} A\left[\begin{array}{l}
\hat{\alpha}_{0} \\
\hat{\alpha}_{1}
\end{array}\right]=A^{\top} b
$$

if $A^{\top} A$ is inv the

when would it be that A doenn't have ind. col.

$$
\text { it } t_{k}=t \forall_{k}\binom{\text { all } t_{k} \text { 's }}{\text { an equal }}
$$

degenerate situation in Linen. regression-.

So lin dep.

HW: Is this the only situation in which $A^{\top} A$ is not inv?
if $A^{\top} A$ is inv

$$
\begin{aligned}
& {\left[\begin{array}{l}
\hat{\alpha}_{0} \\
\hat{\alpha}_{1}
\end{array}\right]=\left[\begin{array}{ll}
m & \Sigma t_{k} \\
\Sigma t_{\nu} & \varepsilon t_{k}^{2}
\end{array}\right]^{-1} A^{\top} b} \\
& \text { if } \sum t_{k}=0 \quad \begin{array}{r}
\text { (via chaje of Vaichla } \\
t^{\text {nen }}=t-\frac{1}{m} \sum t_{k}
\end{array} \\
& {\left[\begin{array}{l}
\hat{\alpha}_{1} \\
\hat{\alpha}_{1}
\end{array}\right]=\left[\begin{array}{cc}
m & 0 \\
0 & \sum t_{k}^{2}
\end{array}\right]^{-1} A^{\top} b} \\
& \text { (HW: invdiag } \\
& =\left[\begin{array}{cc}
1 / m & 0 \\
0 & 1 \\
\sum t_{k}^{2}
\end{array}\right]\left[\begin{array}{c}
\Sigma b_{k} \\
\Sigma t_{k} b_{k}
\end{array}\right]^{\text {maticus }} \text { iseasy) } \\
& =\left[\begin{array}{c}
\frac{1}{m} \sum b_{k} \\
\frac{\sum b_{k} b_{k}}{\sum t_{k}^{2}}
\end{array}\right] \text {. }
\end{aligned}
$$

Fit a Parabola

$$
\begin{aligned}
& b=\left[\begin{array}{l}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right] \quad \alpha=\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \\
& b \approx\left[\begin{array}{lll}
1 & t_{1} & t_{1}^{2} \\
1 & t_{2} & t_{2}^{2} \\
1 & t_{3} & t_{3}^{2}
\end{array}\right]\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \quad \text { Now do } \\
& \text { least squares. }
\end{aligned}
$$

MW: \rightarrow When is it that $A^{\top} A$ is not instentigh in thees A?
\rightarrow how could we make A'A a diag. matrix?
Cs Len :

$$
b_{k} \approx 3 \alpha_{0}+\left(t_{k}-S\right) \alpha_{1}+\left(t_{k}^{2}+t_{k}\right) \alpha_{2}
$$

CSLens: Kernel Methods

