Linear Algebra 15.11. 2023 Afuns Bandere

* Please take a look at the typed lecture notes
(A)

(D)
(B)

(A)

(4.4.) Orthonerral Beses ad Gree Schmidt

Definition (Orthono-el bars)
q_{1}, \ldots, q_{n} a basis of S (subspace \mathbb{R}^{m}) is called an orthonowel basis of

$$
\begin{aligned}
& V_{i, j} \quad 1 \leqslant i, j \leqslant n \\
& \delta_{i j}= \begin{cases}1 & \text { y } i=j \\
0 & 0 . w\end{cases} \\
& \left(\left.\begin{array}{l}
\text { in othen vads } \\
f_{i} i=j \\
q_{i}^{\top} q_{j}=0 \\
q_{i} \perp q_{j} \\
\text { and } \\
q_{i}^{\top} q_{i}=1
\end{array} \right\rvert\, q_{i} \|^{2}=1.1\right)
\end{aligned}
$$

In matrix notation $Q=\left[\begin{array}{ll}1 & 1 \\ q_{1} & 1 \\ 1 & q_{n} \\ 1 & 1\end{array}\right] \quad m \times n$

$$
\left(Q^{\top} Q\right)_{i j}=q_{i}^{\top} q_{j}=\delta_{i j} \quad Q^{\top} Q=I
$$

Exaple (4.4.2)
The canonical bapis for \mathbb{R}^{m} is an exeaple of an orthoneal bafis.

$$
e_{1}, \ldots, e_{m} \text { wher } e_{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\frac{1}{0} \\
i
\end{array}\right)<e t_{1 y}:\left(e_{i}\right)=\delta_{i j}
$$

q_{1}, \ldots, q_{n} are an orthonal basi fuasubspace S of R^{-}
Q

$$
Q^{\top} Q=I
$$

what is $Q Q^{\top}$?

$$
\text { if } \left.n<m\left(S \neq \mathbb{R}^{m}\right) \quad Q=\int^{n}\right]
$$

Cantion: $Q Q^{\top}$ is not

If $n=m\left(S=\mathbb{R}^{m}\right)$

$$
\begin{aligned}
& Q^{\top} Q=\left[\begin{array}{ll}
{[} & {[]} \\
Q Q=[
\end{array}\right]
\end{aligned}
$$

then $Q^{\top} Q=I \Rightarrow Q^{\top}=Q^{-1}$

$$
Q Q^{\top}=I .
$$

Def (4.4.3) An $n \times n$ matnix Q sats/yi- γ $Q^{T} Q=I$ is called an orthogonal
So 2×2 exepln

$$
\begin{aligned}
& Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{\checkmark}, \tilde{Q}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
& Q=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& \hat{Q} \tilde{Q}=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right] \\
& \tilde{Q} \text { is not oithion } \\
& R_{\theta}{ }^{\top} R_{\theta}=\left[\begin{array}{cc}
\cos ^{2}+5 i^{2} & 0 \\
0 & \cos ^{2}+8 i^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Prop 4.4.7 If Q is an orthogonal madix $(n \times n)$
then $\forall x, y \in \mathbb{R}^{m}$

$$
\begin{aligned}
\mathbb{R} \quad\|Q\| & =\|x\| \\
(Q x)^{\top}(Q y) & =x^{\top} y
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& \text { Troof: } \left.\left\|Q_{x}\right\|=\|x\| \Leftrightarrow \| Q_{x}\right)^{2}=\|x\|^{2} \\
& \left\|Q_{x}\right\|^{2}=\left(Q_{x}\right)^{\top}\left(Q_{x}\right)=x^{\top} Q^{\top} Q_{x}==_{x}^{\top}=\|x\|^{2} \\
& \left(Q_{x}^{\top}\left(Q_{y}\right)=x^{\top} Q_{y} Q_{y}^{\top}=x^{\top} y\right.
\end{aligned}
$$

$11-$
exaple:

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
p & p
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
c \\
a \\
d \\
b
\end{array}\right]
$$

Cholege: Show that ary Per-itali, atix is an athogil -action
Chalbge (*) : Show that for any P pesinktio matix ther exists k a positive intejen such that $p^{k}=I$.

- リ
4.4.1 Rejectic with oithono-al bags

Prop: Let S be a subspace of \mathbb{R}^{m} and q_{1}, \ldots, q_{n} an sthona al basis of S.
$Q=\left[\begin{array}{lll}q_{1} & \dot{q}_{1} \\ q_{2}\end{array}\right]$ the projection Matux that projects to $S(C(Q))$ is give by $Q Q^{\top}$.
Proof: The pajectic matrix is given by

$$
\begin{aligned}
& P=Q \frac{\left(Q^{\top} Q\right)^{-1}}{I} Q^{\top}=Q^{\top} \\
& \operatorname{Proj}_{S}(b)=Q Q^{\top} b .
\end{aligned}
$$

- What is the Least Square solutic for

$$
Q x=b
$$

we know it is the solution to the naval eq.

$$
\begin{aligned}
Q^{\top} Q \hat{x} & =Q^{\top} b \\
\hat{x} & =Q^{\top} b
\end{aligned}
$$

How do we build Orthono-al bass?
let a_{1}, \ldots, a_{n} be a basis of $S($ subspace
of $\left.\mathbb{R}^{m}\right)$ how do we go fum $a_{s, \sim} a_{n}$ to an othonnal bats q, \ldots, q_{n} ?

$$
\begin{aligned}
& {\underset{a}{a}}_{a_{2}}^{\|\cdot\|=3} \longrightarrow \\
& {\left[\begin{array}{ll}
a_{1} & a_{2} \\
\vdots & a_{2}
\end{array}\right]} \\
& q_{1}=\frac{a_{1}}{\| a_{1}},\left\|q_{1}\right\|=1 \\
& \hat{q}_{2}^{n} \\
& \dot{q}_{2}=a_{2}=\dot{q_{2}} \underline{q}_{1} q_{1}, \dot{q}_{2}^{\top} q_{1}=0 \\
& \left(a_{2}-\alpha q_{1}\right)^{\top} q_{1}=0 \\
& a_{2}^{\top} q_{1}-\alpha=0 \\
& \alpha=\left(a_{2}{ }^{\top} q_{1}\right) \\
& q_{2}^{\prime}=a_{2}-\left(a_{2}^{\top} q_{1}\right) q_{1} \\
& q_{2}=\frac{q_{2}^{\prime}}{\left\|q_{2}\right\|} \\
& q_{1}=\frac{a_{1}}{\left\|a_{1}\right\|} \text { and } q_{2}=\frac{a_{2}-\left(a_{2}^{\top} q_{1}\right) q_{1}}{\left\|a_{2}-\left(a_{2}^{\top} q_{1}\right) q_{1}\right\|}
\end{aligned}
$$

4.4.2. Ga - Schmidt Boers:

Alogrith 4.4.10.
Given n linearly independent vectors a_{1}, \ldots, a_{n} (they ane a basis for $C(A)$) the Gran-Sch-idt Process computes an othonoval basis q_{1}, \ldots, q_{n} of ((A) in the follow g way

$$
q_{1}=a_{1 /\left\|a_{1}\right\|}
$$

fo $k=2, \ldots, n$ do

$$
\begin{aligned}
& q_{k}=\frac{a_{k}-\operatorname{Pao}_{10} j_{\text {spar }\left(q_{1}-q_{k-1}\right)}\left(a_{k}\right)}{\left\|a_{k}-P_{n o 0_{\text {spa }}(-)}\left(a_{k}\right)\right\|} \\
& P_{10} j_{S_{p a}\left(q_{1}, \ldots, q_{k-1}\right)}\left(a_{k}\right)=\left(a_{k}^{\top} q_{1}\right) q_{1}+\left(a_{k}^{\top} q_{2}\right) q_{2} \\
& +\cdots+\left(a_{k}^{\top} q_{k-1}\right) q_{k-1} \\
& =\sum_{j=1}\left(a_{k}^{\top} q_{j}\right) q_{j}
\end{aligned}
$$

Sanity check: $q_{k}^{\top} q_{j}=0$ for $i<k$

$$
\left.\left(\left(a_{k}-\sum_{j=1}^{k-1} a_{k}^{\top} q_{j}\right) q_{j}\right)^{\top} q_{i}=a_{k}^{\top} q_{i}-\sum_{j=1}^{k-1}\left(a_{k}^{\top} q_{j}\right)\left(q_{j}^{\top} q_{i}\right)\right)
$$

Proof: Try to do it (detailed in notes but try Mo fou ready

- $\because-$

Let A be an $m \times n$ matrix with ind. colvans.
Q the $m \times n$ matrix whose columns are the athoun-l basis outputted by Green - Sch-odt.

$$
C(A)=C(Q)
$$ $Q^{\top} Q=I$.

$R:=Q^{\top} A \quad$ what do we know about R ?

$$
\begin{aligned}
& R_{i j} \quad i>j \quad R_{i j}=q_{i}^{\top} a_{j}=0 \\
& R_{21} \quad q_{2}^{\top} a_{1}=0 ?
\end{aligned}
$$

