Linear Algebra 17.11. 2023 Afuns Bandere

* Please take a look at the typed lecture notes
4.4.2. Gia - Schidt Phouss:
from
Aogrith 4.4.10.
Given n livearly indepedect
vectors a_{y}, \ldots, a_{n} (they one abais far $C(A)$)
the Gran-Schridt Priecers corr pirtes
on a thononal bapis $q_{i}, \rightarrow q_{n}$ of ((A) in the follouz way

$$
q_{1}=a_{1}\left\|a_{1}\right\|
$$

for $k=2, \ldots, n$ do

$$
\begin{aligned}
& q_{k}=\frac{a_{k}-\operatorname{proj}_{\operatorname{spar}\left(q_{1},-, q_{k-1}\right)}\left(a_{k}\right)}{\left\|a_{k}-\operatorname{Proj}_{\operatorname{spa}(\ldots}\left(a_{k}\right)\right\|} \\
& \operatorname{Span}\left(q_{1}, \ldots, q_{k-1}\right)=\operatorname{Span}\left(a_{1}, \ldots, a_{k-1}\right)
\end{aligned}
$$

Let A man with ind colvens
Let Q mxn whose colu-ns are the output of Gen-Sunidt on $a_{1,1}, a_{n}$

$$
C(Q)=C(A)
$$

Fact 4.4.13:
A $m \times n$ with ind colum.

$$
A=Q R
$$

$$
C(A)=C(Q)
$$

Proj on $C(A)$ is the sace as pijon $C(Q)$

$$
\operatorname{Pno}_{c(A)}(b)=Q Q^{\top} b
$$

$$
\begin{aligned}
& R:=Q^{\top} A \quad R \text { is } n \times n \\
& R_{i j}=0 \quad i \quad i>j \text {. } \\
& R_{i j}=q_{i}^{\top} a_{j} \\
& R=\left[\begin{array}{ll}
0 \\
0.0 & 0
\end{array}\right] \\
& \text { upper thicum } \\
& q_{i} \perp S_{\text {pan }}\left(a_{1}, \ldots, a_{i,}\right) \\
& q_{i} \perp a_{j} \\
& R=Q^{\top} A \\
& Q R=Q Q^{\top} A \\
& =A \\
& \text { (DA:4.4.12) } \\
& Q R-\text { decer positian. } \\
& A=Q R \\
& Q^{\top} Q=I \\
& R \text { is upper trioghen. }
\end{aligned}
$$

\rightarrow Least Squaber of $A x=b$
is the soluti- to

$$
A^{\top} A \hat{x}=A^{\top} b
$$

$A=Q R$

$$
\begin{gathered}
(Q R)^{\top}(Q R) \hat{x}=(Q R)^{\top} b \\
R^{\top} \underbrace{Q^{\top} Q R} R \hat{x}=R^{\top} Q^{\top} b \\
R^{\top} R \hat{x}=R^{\top} Q^{\top} b \\
R \hat{x}=Q^{\top} b
\end{gathered}
$$

what is $N(R)$?
if $x \in N(R)$

$$
\begin{align*}
& \quad Q R x=0 \\
& A x=0 \\
& x \in N(A) \text { so } N(R)=\{0\} \\
& \Rightarrow x=0 \text { is inv } \tag{array}
\end{align*}
$$

can be solved
"backsubditution"
Si-ce R is up. triggh
Gvichg Questser: How do we "inuest" a maturx that's not invertizh?
Goal: Given a matix A $m \times n$ we wat to define ronstand A^{+}preudo-invers

$$
A: \underset{\in \mathbb{R}^{n}}{x} \underset{\in \mathbb{R}^{m}}{ } A x=b
$$

Goal

$$
A^{+}: b \rightarrow x \quad ? ? ?
$$

why not possible :
possible ab for some $b \in \mathbb{R}^{m}$ these is no x sit. $A x=b$
(ii) for soc $b \in \mathbb{R}^{m}$, then may $h_{c} b_{c}$ many $x \in \mathbb{R}^{n}$ such that $A x=b$ which one do we pick?
(iii) should be of the for $\hat{x}=\bar{A}^{+} b$

Def 4 S.
11
$[A]$
$A \in \mathbb{R}^{m \times n}$ ind columns $(\square \operatorname{rank}(A)=n$

$$
A^{+}=\left(A^{\top} A\right)^{-1} A^{\top}
$$

(A) full coleen ranks
A^{+}takes b to the least squares on. f $A x=b$
Prop:

$$
A^{+} A=I
$$

Roof:

$$
\begin{aligned}
A^{+} A & =\left(A^{\top} A\right)^{-} A^{\top} A \\
& =I
\end{aligned}
$$

$$
\left[\left.A\right|^{\left[a^{+}\right]} \neq I\right.
$$

A is $m \times n \quad A$ has ind rows full row rank

$$
\left[\begin{array}{l}
r-k(A)=m \\
m \leqslant n
\end{array}\right.
$$

we can def in

$$
\begin{aligned}
& A^{+}=\left(\left(A^{\top}\right)^{+}\right)^{\top}= \\
& =\left(\left(\left(A^{\top}\right)^{\top} A^{\top}\right)^{-1}\left(A^{\top}\right)^{\top}\right)^{\top} \\
& =\left(\left(A A^{\top}\right)^{-1} A\right)^{\top}=A^{\top}\left(\left(A A^{\top}\right)^{-1}\right)^{\top} \\
& =A^{\top}\left(\left(A A^{\top}\right)^{\top}\right)^{-1}=A^{\top}\left(A A^{\top}\right)^{-1} .
\end{aligned}
$$

Def: $A m \times n$ with $\operatorname{rak}(A)=m$

$$
A^{+}:=A^{\top}\left(A A^{\top}\right)^{-1}
$$

Prop: if A is foll row rok

$$
A A^{+}=I .
$$

Proof: $A A^{\top}\left(A A^{\top}\right)^{-1}=I$.

A $m \times n \quad \operatorname{rak}(A)=m$
for my $b \in \mathbb{R}^{m}$

$$
A x=b \text { has a solution } x \text {. }
$$

Any $x \in N(A)$ is a solution to $A_{x}=0$.

natural: $\quad \hat{x}$ to be the solution of $\min \|x\|^{2}$

$$
\begin{equation*}
\text { s.t. } A x=b \tag{10}
\end{equation*}
$$

both x_{1} and x_{2} aresolutions of $A x=b$

$$
A\left(x_{1}-x_{2}\right)=A x_{1}-A x_{2}=b-b=0 \Rightarrow x_{1}-x_{2} \in N(x)
$$

of $y \in N(A)$ ad $A x=b$ th $A(x+y)=A x+A y=b$
giver x_{0} s.t. $A x_{0}=b$ all solution of
$A x=b$ ane of the for $x_{0}+y$ of (Capful proof on the rates)
\hat{x} unique sol of (10) is \hat{x} st.

$$
A x=b \text { and } x \in N(A)^{\perp}=C\left(A^{\top}\right)
$$

Prop: for A full row rack $\hat{x}=A^{+} b$ is the umps sol of (10).
Proof:

$$
\rightarrow A \hat{x}=A A^{+} b=b
$$

ned to show

$$
\begin{aligned}
\hat{x} & \in N(A)^{\perp} \propto \hat{x} \\
\hat{x}=A^{+} b & =A^{\top}\left(A A^{\top}\right)^{-1} b \in\left(\left(A^{\top}\right)\right.
\end{aligned}
$$

what of A is wether full row n coleen rank?
$\min \|x\|$
idea.

$$
\hat{x}=A^{+} b \text { bbesd } f=\min \|x\|
$$

