Linear Algebras 24.11. 2023 Afuns Bandere

* Pleas take a look at the typed lecture notes

Last lecture:
Prop: Given two Limen Trasfu-atios L, T from U to V and a bap's u_{1}, \ldots, u_{n} of U

$$
\text { if } L\left(u_{k}\right)=T\left(u_{k}\right) \quad \forall_{k} \text { the } L=T \text {. }
$$

Prof: For any $u \in U, u=\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}$

$$
\begin{aligned}
T(u)=T\left(\alpha_{1} u_{1}+-+\alpha_{n} u_{n}\right) & =\alpha_{1} T\left(u_{1}\right)+\cdots+\alpha_{n} T\left(u_{n}\right) \\
& =\alpha_{1} L\left(u_{1}\right)+\cdots+\alpha_{n} L\left(u_{n}\right) \\
& =L(u) .
\end{aligned}
$$

Prop: Given U ad V vecta spaces and $u_{1}, \ldots, u_{n} \in U$ a basis of U
fa any $v_{j}, \ldots, v_{n} \in V$ then exists a L.T. T set. $T\left(u_{k}\right)=v_{k}$.
Poof Give $x \in U, x=\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}$ and define T as $T(x)=\alpha_{1} T\left(u_{1}\right)+\cdots+\alpha_{n} T\left(u_{n}\right)$ (HW. show that T is a L.T.)

Exeples, $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
(A) $T(x)=x$

LT.
(B) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$
$T(x)=n \times \|$
not L.T.
(C) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
T(x)=v^{\top} x
$$

(farsaefoodv)
(D) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
not L.T.
(E)

$$
\begin{aligned}
& T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& T(x)=A x
\end{aligned}
$$

(for A soo $f_{\text {ratad }}^{\text {rat }}$)

$$
\begin{aligned}
& A(x+y)=A x+A y \\
& A(\alpha x)=\alpha A x
\end{aligned}
$$

Prop: (S.0.10) : For any L.T. $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ then exists a matins $A \in \mathbb{R}^{m \times n}$ sit. $T(x)=A x$.
Proof: Let e_{1}, \ldots, e_{n} be the canonical bars in \mathbb{R}^{n} $\left(e_{i}\right)_{j}=\delta_{i j}$.

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \times=\left[\begin{array}{l}
x_{x_{1}} \\
\dot{x}_{n}
\end{array}\right] \quad x=x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n} \\
& T(x)=T\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=x_{1} T\left(e_{1}\right)+x_{2} T\left(e_{2}\right)+\cdots x_{n}\left(k_{n}\right) \\
& \\
& =\left[\begin{array}{ccc}
1 & 1 & 1 \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots T\left(e_{n}\right) \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=A x
\end{aligned}
$$

A is the -active with colv-ns $T\left(\varphi_{1}\right) \cdots T\left(e_{n}\right)$. $\underset{\substack{\text { hop: } \\ \text { (soil) }}}{ } T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$

$$
\operatorname{matax} A
$$

$$
(m \times n)
$$

$$
\begin{aligned}
& \operatorname{LoT:}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p} \\
& \operatorname{LoT}(x)=L(T(x))
\end{aligned}
$$

Determinants

Deter-inat of a squan ~atrix $A(n \times n)$ is the (signed) volune of the i-age of the unt cube by A.

It measuis how much" the space is expacdel" by applyi-g A.

The determinant | Chapter 6, Essence of linear algebra
3Blue1Brown \ominus
5.56 M subscribers

Subscribe
$074 \mathrm{~K} \quad \Rightarrow$ share
(5) Thanks \&o clip
3.3M views 7 years ago 3Blue1Brown series S1 E6

Figure 4. Calculation in 3Blue1Brown's video (see Remark 5.1.1) computing the determinant of a 2×2 matrix as the area of the image of the unit square after a linear transformation (that does not change orientation).

Theon S.1.2: A matux $A \in \mathbb{R}^{n \times n}$ is inventible iff (if and oly if)

$$
\begin{gathered}
\quad \operatorname{det}(A) \neq 0 \\
2 \times 2 \text { netuces } \\
\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| \\
=a d-b c \quad\left[\begin{array}{ll}
w x \\
y z
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{gathered}
$$

$a \sim b$ is non-zero c ad is non-zen.

$$
\begin{gathered}
{\left[\begin{array}{cc}
a & b
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]=0} \\
{\left[\begin{array}{l}
x \\
z
\end{array}\right]=\alpha_{1}\left[\begin{array}{c}
-b \\
a
\end{array}\right]} \\
{\left[\begin{array}{c}
c
\end{array}\right]\left[\begin{array}{l}
\omega \\
y
\end{array}\right]=0} \\
{\left[\begin{array}{l}
w \\
y
\end{array}\right]=\alpha_{2}\left[\begin{array}{c}
d \\
-c
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{r}
{\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{l}
w \\
y
\end{array}\right]=1 \Leftrightarrow\left[\begin{array}{ll}
a & b
\end{array}\right] \alpha_{2}\left[\begin{array}{c}
d \\
-c
\end{array}\right]=1} \\
\alpha_{2}\left(a d-b_{c}\right)=1
\end{array} \\
& {\left[\begin{array}{ll}
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]=1} \\
& \alpha_{2}=\frac{1}{a d-b c}=\frac{1}{\operatorname{det}(A)} \\
& \text { (2) }[c d] \alpha_{1}\left[\begin{array}{c}
-b \\
a
\end{array}\right]=1 \\
& \begin{array}{c}
\alpha_{1}(-c b+d a) \\
\alpha_{1}=\frac{1}{\operatorname{de}(A)}
\end{array}\left[\begin{array}{l}
w \\
y
\end{array}\right]=\frac{1}{\operatorname{dat}(A)}\left[\begin{array}{c}
d \\
-c
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
z
\end{array}\right]=\frac{1}{\operatorname{det}(a)}\left[\begin{array}{c}
-b \\
a
\end{array}\right]} \\
& {\left[\begin{array}{ll}
\omega & x \\
y & z
\end{array}\right]=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]} \\
& A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& \operatorname{det}\left(A^{-1}\right) ? \\
& \begin{array}{c}
\operatorname{det}\left(A^{-1}\right)=\left|\begin{array}{ll}
\frac{d}{\operatorname{de}(A)} & \frac{-b}{\operatorname{det}(A)} \\
\frac{-c}{\operatorname{det}(A)} & \frac{a}{\operatorname{det}(A)}
\end{array}\right|=\frac{1}{\operatorname{det}(A)^{2}}\left(d a-b_{c}\right) \\
c \frac{1}{\operatorname{det}(A) .}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Therem: } A, B \in \mathbb{R}^{n \times n} \\
& \text { S. } 1.4 . \\
& \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \\
& A B x=A(B x)
\end{aligned}
$$

Defis.1.s. (sign of Peratation)
Given a perutation

$$
\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} .
$$

$$
\operatorname{sigh}(\sigma)=\operatorname{sgn}(\sigma)=
$$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
1 \text { f } \mid(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, n\} \text { s.t. } i<j, \sigma(i)>o(j) \\
\text { is even } \\
-1 \text { if } 1, \\
\text { is odd. }
\end{array}\right. \\
& \qquad\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \rightarrow\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad+1 \\
& \left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \rightarrow\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)-1
\end{aligned}
$$

Exp. Challye:

- exatly half a perntations havo fign 1.

$$
\operatorname{sign}(\sigma \circ \gamma)=\frac{\operatorname{sigh}(\sigma)}{\operatorname{sigh}(\gamma)} \quad\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \rightarrow\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)+1
$$

Def (Deterinat) Given an $n \times n$ ratix A_{1} withetries the deterinat is give by

$$
\operatorname{det}(A)=\sum_{\sigma \in \mathbb{T}_{n}} \operatorname{sign}(\sigma) \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

Prop S.1.7. Pa perantation -atux (correspadiz to pentatio σ)

$$
\operatorname{det}(P)=\operatorname{sigh}(\sigma) .
$$

(Hiwl: Convice youralf of ths)
HW:

$$
\left|\begin{array}{ll}
a & b c \\
d & e \\
g & h \\
g & j
\end{array}\right|=?
$$

$$
4
$$

