Linear Algebra 1.12.2023

Afons Dandeire

& Please take a look at the typed lacture notes

Complex Nutres 1, 2, 3, 4. needs negative numbers 2 to here solutions 2+10=5 we need vational Q nubers Q a,502. 10x = 5has no solution over Q. We need R. $\chi^2 = -1$ we need C. $\left(\begin{array}{cccc} c & c & c & c \\ c & c & c & c \end{array}\right)$ i = -1 a, b ell? C = { a + ib

(a+ib)+(x+iy) = (a+x)+i(b+y) $(a+ib)(x+iy) = ax+ibx+iay+i^2by$ =(ax-by)+i(bx+ay)

$$(a+ib)(a-ib) = a^{2}-i^{2}b^{2} = a^{2}+b^{2},$$

$$a+ib = \frac{(x-iy)(a+ib)}{(x-iy)(x+iy)} = \frac{(ax+by)+i(xb-ya)}{x^{2}+y^{2}}$$

$$2 \in \mathbb{C} \qquad 2 = a+ib \qquad 2 \in \mathbb{C} \qquad 2_{1}, 2_{2} \in \mathbb{C}$$

$$R(z) := a \qquad |z|^{2} = \overline{z} + \overline{z}$$

$$I(z) := b \qquad |z|^{2} = \overline{z} + \overline{z}$$

$$I(z) := b \qquad |z|^{2} = \overline{z} + \overline{z}$$

$$I(z) := a \qquad |z|^{2} = \overline{z} + \overline{z}$$

$$Z_{1} = a - ib \qquad |z_{1}|^{2} = \overline{z} + \overline{z}$$

$$\overline{z}_{2} = \overline{z}_{1} + \overline{z}_{2}$$

Fact 6.0.1. (Euler's formla)
$$\theta \in \mathbb{R}$$

$$e^{i\theta} = \cos \theta + i \sin \theta.$$
If $\theta = \Pi$

$$e^{i\Pi}$$

$$e^{i\Pi} = -1$$

$$e^{i\Pi} + 1 = 0$$

$$\frac{1}{2}$$

$$\frac{1}$$

$$\chi^{2} = i$$

$$(\alpha + ib)^{2} = i$$

$$\left(\frac{2}{2} + i\frac{2}{2}\right)^{2} = \frac{2}{4} + 2\frac{2}{4}i - \frac{2}{4}i$$

Theorem 6.0.3. (Fundametel Theore of Algebra)
Any degree n non-constat polynomial (n21) (2) = dn Z + dn-12 --- + x, 2+d, has a zero $\lambda \in \mathbb{C}$. (also called) $P(\lambda) = 0$. d, ≠0. Covollary: Pl3) = Ln 3 + --- + do dn ≠ 0 h>1. (#) P(2) = dn(2-1)(2-12) --- (2-12) Jeros might be repeated. The number of fine $\lambda \in \mathbb{C}$ shows up in (#) is called the algebra; multiplicity of the yere. Coplex Valued matrices and verters $V = \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} \qquad V_k \in \mathbb{C}$ AEC mxn. $\|\mathbf{v}\|^2 = \sum_{i=1}^{N} |\mathbf{v}_i|^2 = \sum_{i=1}^{N} |\mathbf{v}_i|^2 = \mathbf{v}^* \mathbf{v}$

 $N = \langle V'' V'' \rangle = \left[V'_1 V'_2 V''_2 V''$ a subspace

VeU

the dVeU deof dec.

is defined the same way.

but with scale dec. V1,, VK € C" the Span (V1, -1, VK) = = { \alpha, \begin{aligned}
& \alpha, \begin We say VI,.., VKE Card lineary ind if d, V, + --- + d, V, = 0 => d, , , , , , = 0 ind they are called a basis. (COS O + i sin O) COS (+ i sin () = = (cos 0 cos p - 8in 0 8i- p) + i (cos 0 8i- p+ 51-0cosp) Cos (0+4) sin (θ+y).

Eigenvalues ad eigenvectors.

Guidig Exampe

Fibonecci Nubers.

$$\begin{cases}
F_{0} = 0, F_{1} = 1 \\
F_{1} = F_{1} + F_{1} - 2
\end{cases}$$

$$\begin{cases}
F_{n+1} \\
F_{n}
\end{cases} = \begin{cases}
I \\
I \\
I
\end{cases}$$

$$\begin{cases}
F_{n-1} \\
F_{n-1}
\end{cases}$$

$$\begin{cases}
F_{n+1} \\
F_{n-1}
\end{cases}$$

Def: Given $A \in \mathbb{R}^n$, we set $\lambda \in \mathbb{C}$ is an eigenvector of A, associated with the eigenvalue λ , whe $Av = \lambda v$.

Av = λv .

We call λ , ν an eigenvalue-eigenvalue pair

If $\lambda \in IR$ we call it a real eigenvalue.

and λ , ν a real eigenvalue-eigenvector pair.

Goal: find eigenvalues of
$$M = \begin{bmatrix} 11 \\ 10 \end{bmatrix}$$
 $Mv = \lambda v$ $V \neq 0$
 $(M - \lambda I)v = 0 \Rightarrow M - \lambda I$ is not inverted det $(M - \lambda I) = 0$
 $0 = \begin{vmatrix} 1 - \lambda \\ 1 \end{vmatrix} = (1 - \lambda)(\lambda) - (1)(1) = \lambda^2 - \lambda - 1$
 $2 - \lambda - 1 = 0$
 $2 = 1 \pm \sqrt{1 + 4} = 1 \pm (5)$
 $2 = 1 \pm \sqrt{5}$
 $3 = 1 + \sqrt{5}$
 3

$$\begin{array}{l}
(V_1)_2 = 1 & \left[1 - \frac{1+V_S}{2}\right](W_1)_1 \\
(V_1)_1 = \frac{1+V_S}{2} \\
\lambda_1 = \frac{1+V_S}{2}, \quad V_1 = \left[\frac{1+V_S}{2}\right] \quad \text{(HW: clack)} \\
\lambda_2 = \frac{1-V_S}{2}, \quad V_2 = \left[\frac{1-V_S}{2}\right] \\
1 & \lambda_1 = \frac{1}{2} \\
\lambda_2 = \frac{1-V_S}{2}, \quad V_3 = \left[\frac{1-V_S}{2}\right] \\
\lambda_4 = \frac{1}{2} \\
\lambda_5 & \text{one evalur-eventor} \\
\lambda_7 & \text{one evalur-eventor} \\
\lambda_7 & \text{one evalur-eventor}
\end{array}$$

Prop6.1.2. Let AEIRNXN LEIR is a (veal) eigenvalur of A if ad only if det (A-XI)=0 and V is an associated eigenverten if

VEN(A	$-\lambda I$) \ \S	~ 0 1 4 ~ 1	
Prop 6.1.3.	ut (A-XI)	is a polu	incial in h
of degree n	. In coeff.	ind of the	te lis
egna	l to: (-1)	1 (thy a	3×3er-pli)
Theore 6.1.4. eizenvalue	(perhaps >	$\in \mathbb{C}$	
Proof:	Fundanatal	Th- of Al	Zeha.
_			-
We'll -ostly adopts naturally	to DEC,	ve C° , ∨	EN(A-17)15
		•	
		Vievedo	is a subspace of
back to Fibonec		Vieved o	s a subspace of
· · · · · · · <u>·</u> · · ·		Vievedo	s a subspace of
· · · · · · · <u>·</u> · · ·		Vieved o	s a subspace of
· · · · · · · <u>·</u> · · ·		$\sqrt{4} \times \sqrt{4}$	s a subspace of
· · · · · · · <u>·</u> · · ·		$\frac{\sqrt{4}\sqrt{5}}{2}$	s a subspace of
· · · · · · · <u>·</u> · · ·		$\frac{\sqrt{4}\sqrt{5}}{2}$ $= \frac{1+\sqrt{5}}{2}$ $= \frac{1-\sqrt{5}}{2}$	s a subspace of
· · · · · · · <u>·</u> · · ·		Vicued 0 = [1+15] = [1-15]	s a subspace of
· · · · · · · <u>·</u> · · ·		Vicued 0	s a subspace of

an a sepir for

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = g_0 = d_1 \vee_1 + d_2 \vee_2 .$$

$$\alpha_1 = \frac{1}{\sqrt{s}}, \alpha_2 = -\frac{1}{\sqrt{s}}.$$

$$g_n = A g_{n-1} = A g_{n-2} = A g_0$$

$$g_n = A^n (\alpha_1 \vee_1 + \alpha_2 \vee_2)$$

$$g_n = A^n \alpha_1 \vee_1 + A \alpha_2 \vee_2$$

$$= \alpha_1 A^n \vee_1 + \alpha_2 A^n \vee_2 .$$

$$A \vee_1 = \lambda_1 \vee_1$$

$$A \vee_1 = \lambda_1 \vee$$

$$g_{n} = \frac{1}{\sqrt{s}} \left(\frac{1+\sqrt{s}}{2} \right) V_{1} + \left(\frac{-1}{\sqrt{s}} \right) \left(\frac{1-\sqrt{s}}{2} \right) V_{2}$$

$$\begin{cases} f_{n+1} \\ f_{n} \end{cases} = \frac{1}{\sqrt{s}} \left(\frac{1+\sqrt{s}}{2} \right) \left[\frac{1+\sqrt{s}}{2} \right] + \frac{1}{\sqrt{s}}$$

$$+\left(\frac{1}{\sqrt{s}}\right)\left(\frac{1-\sqrt{s}}{2}\right)\left[\frac{1-\sqrt{s}}{2}\right]$$

$$F_{N} = \frac{1}{\sqrt{s}} \left(\frac{1 + \sqrt{s}}{z} \right)^{2} - \frac{1}{\sqrt{s}} \left(\frac{1 - \sqrt{s}}{z} \right)^{2}$$

$$\frac{1+\sqrt{s}}{2}$$