Linear Algebras
13.12. 2023
Afunso Bandeire

Please take a look at the typed lecture notes

* The full notes ar now available!!

Last Lecture:
L, writer in the basis $u_{1,-,} u_{n}$ ad $v_{1, \ldots}, v_{\text {An }}$ is described by the -atio $V^{-1} A \cup$. where A is the mater repuestig L in the canonical brass.
$L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ liner. ties.

$$
\begin{aligned}
& L\left(\sum_{j=1}^{n} x_{j} e_{j}\right)=\sum_{i=1}^{m}(A x)_{i} e_{i} \quad x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& L\left(\sum_{j=1}^{n} \alpha_{j} u_{j}\right)=\sum_{i=1}^{m}(B \alpha)_{i} v_{i} \quad \alpha=\left[\begin{array}{c}
x_{1} \\
\alpha_{n}
\end{array}\right] \\
& B=V^{-1} A \cup
\end{aligned}
$$

This is called the chang of basis of a linear transfar-ation.
back to $n \times n$ matrices.
$A \in \mathbb{R}^{n \times n}$ has a ca plate set of eigenvectors.
v_{1}, \ldots, v_{n} eigenvector of A basis of \mathbb{R}^{n}.
any vector v can be writer as

$$
\begin{aligned}
& v=\sum \alpha_{i} v_{i} \\
& A v=\sum \alpha_{i} A_{v_{i}}=\sum \underbrace{}_{i} \lambda_{i} v_{i} \\
& A_{v}^{10}=\sum \alpha_{i} A^{10} v_{i}=\sum \alpha_{i} \lambda_{i}^{10} v_{i} .
\end{aligned}
$$

Thioum 6.2.1. Let $A \in \mathbb{R}^{n \times n}$ with a applete set of rall eigenvector v_{1}, \ldots, v_{n} and associated eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$.
Let $V \in \mathbb{R}^{n \times n}$ be the -atn'x with columns $v_{1}, \ldots, v_{n} \quad V=\left[\begin{array}{cc}1 & 1 \\ v_{1} & \ldots v_{n} \\ 1 & 1\end{array}\right]$

$$
\begin{equation*}
A=V \Lambda V^{-1} \tag{1}
\end{equation*}
$$

where Λ is an $n \times n$ diagonal motion with $\lambda_{1}, \ldots, \lambda_{n}$ in the deagoral.
Proof: v_{1}, \ldots, v_{n} is a basis thus V is invertible. it is enough to show

$$
V^{-1} A V=\Lambda
$$

$$
\begin{aligned}
& V^{-1} A V=\Lambda \Leftrightarrow \\
& V V^{-1} A V=V \wedge \\
& V V^{-1} A V V^{-1}=V A V^{-1} \\
& A=V \wedge V^{-1}
\end{aligned}
$$

$$
\frac{A=V \wedge V^{-1}}{V-n \text { of } V^{-1} A V}
$$

let's see what is the $j^{-t h}$ cilv-n of $V^{-1} A V$.

$$
\begin{aligned}
& \left(V^{-1} A V\right)_{\cdot j}=V^{-1} A V e_{j}=V^{-1} A V_{j}= \\
& =V^{-1} \lambda_{j} v_{j}=\lambda_{j} V^{-1} v_{j}=\lambda_{j} e_{j}
\end{aligned}
$$

$\frac{\text { Def: If we ce do the above }}{6.2 .2} \quad A$ is diagralizebl
A is diagoralizabl.
\qquad
Def 6.2.3. We say $A \in \mathbb{R}^{n \times n}$ ad $B \in \mathbb{R}^{n \times n}$ are sivilan nativien of thase exists $S_{n \times n}$ invertible s.t.

$$
B=S^{-1} A S \text {. }
$$

Prop 6.2.4. Sicien ratrice have the Sue ejenvalues.

$$
\text { Prof: HW }\left(\begin{array}{c}
\text { Sec Chall- } \gamma \\
64 c d \\
65
\end{array}\right)
$$

Theoren 6.3.1 [Spectial Trooem]
Any Symmetric matix $A \in \mathbb{R}^{n \times n}, A^{\top}=A$ has a ce-plete set of real eigenveltas ad they ca be -ade oithono-al.
(andhas a real eigenvalues, up to repextition).

$$
\left(\text { if } B \in \mathbb{R}^{m \times n} \text { nob sympatic, } B^{\top} B \text { ad } B B^{\top} \text { anc } \begin{array}{c}
\text { Sy mive }
\end{array}\right)
$$

Corillay 6.3. 3.
If $A \in \mathbb{R}^{n \times n}$ is sy-retic.

$$
\begin{equation*}
A=V \wedge V^{\top} \tag{2}
\end{equation*}
$$

whes $V=\left[\begin{array}{cc}1 & 1 \\ v_{1} & \cdots-v_{n} \\ 1 & 1\end{array}\right]$ matax with n orthonor-d eigenvertos of A, ad A diag with $\Lambda_{i i}=\lambda_{i}$.
Renarks 6.3.3. (1) ad (2) ad (3).
eigen de a-positions.
Cor. 6.3.4. $A \in \notin R^{n \times n}$ sy-1
$\operatorname{rack}(A)=\#$ non-zero e-values of A (countong repetitions)
Prop 6.3.6. $A \in \mathbb{R}^{n \times n}$ sy-. $v_{1, \ldots,}, V_{n}$ athono-d basis of e-vectors, $\lambda_{1}, \ldots, \lambda_{n}$ correspedig l-values

$$
\begin{equation*}
A=\sum_{k=1}^{n} \underbrace{\lambda_{k} V_{k} V_{k}^{T}}_{\operatorname{rank} 1} \tag{3}
\end{equation*}
$$

HW: prove this.

Prop 6.3.7. Let $A \in \mathbb{R}_{s y-\text { men }}$ Let $\lambda \in \mathbb{C}$ be an eigenvalue of A, then $\lambda \in \mathbb{R}$.
Proof: Let $v \in \mathbb{C}^{n}$ be an e-veetn of A arsecicted with λ.

$$
A_{v}=\lambda v
$$

wal
$M^{*}=\bar{M}^{\top} \quad$ since $A \in \mathbb{R}^{n \times n}$ and $s y-$

$$
A^{*}=\bar{A}^{\top}=A^{\top}=A
$$

$$
\begin{gathered}
c^{=} v^{*} A v=v^{*}(\lambda v)=\lambda v^{*} v= \\
=\lambda\|v\|^{2} \\
=(\lambda v)^{*} v=(A v)^{*} v=v^{*} A^{*} v=v^{*} A v= \\
=\bar{\lambda} v^{*} v=\bar{\lambda}\|v\|^{2} \\
\\
\lambda\|v\|^{2}=\bar{\lambda}\|v\|^{2} \\
\Leftrightarrow \lambda=\bar{\lambda} \\
\Leftrightarrow \lambda \in \mathbb{R} .
\end{gathered}
$$

Obs: True fn $\underbrace{A \in \mathbb{C}^{n \times n} \text { s.t }, A^{*}=A \text {; }}_{A \text { Herritian. }}$
Cor 6.3.8 Every real sympratic matrix has a real eigenvalue.

Reank 6.3.9.
$A \in \mathbb{R}^{n \times n}$ sy-.
V_{1} ad V_{2} e-vectn of A with dif. e-valuen

$$
\begin{array}{r}
\lambda_{1} v_{1}^{\top} v_{2}=\left(\lambda_{1} v_{1}^{\top} v_{2}=\left(A v_{1}\right)^{\top} v_{2}=v_{1}^{\top} A^{\top} v_{2}=v_{1}^{\top} A v_{2}=v_{1}^{\top} \lambda_{2} v_{2}\right. \\
=\lambda_{2} v_{1}^{\top} v_{2} \\
\lambda_{1} v_{1}^{\top} v_{2}=\lambda_{2} v_{1}^{\top} v_{2} \\
\lambda_{1} \neq \lambda_{2} \\
\Rightarrow v_{1}^{\top} v_{2}=0 . \\
v_{1} \perp v_{2} .
\end{array}
$$

Proof of Spectral Theorem.
$A \in \mathbb{R}^{n x n}$ sym.

- Fo any $1 \leqslant k \leqslant n, A$ has k orthono-al eigenvectors.

$$
\begin{array}{r}
k=n \text { gives us sur } \\
\text { The. }
\end{array}
$$

Let's use induction.
$\rightarrow k=1$. By Cor 6.3.8 then is a veal eire vector and we co normalize it to have now 1 .
\rightarrow Assur jg we have v_{1}, \ldots, v_{k} othona-d eigenvectors of A (with evalues $\lambda_{11}, \lambda_{k}$) wo will show we can "add" one nous v_{k+1}.
Let u_{k+1}, \ldots, u_{n} be an othono-al basis
fen the athogoral a-plect of the spar of v_{1}, \ldots, v_{k}.
$v_{1}, \ldots, v_{k}, u_{k+1}, \ldots, u_{n}$ is an orthonal bavis of \mathbb{R}^{n}
$V n \times n$ matrix $V=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ V_{1} & -v_{k} & u_{k+1} & \cdots u_{n} \\ 1 & 1 & 1 & 1\end{array}\right]$

$$
V^{T} V=I, V V^{T}=I
$$

$B=V^{\top} A V=\left[\begin{array}{c}-v_{1}^{\top}- \\ \vdots \\ - \\ -v_{k}^{\top} \\ - \\ u_{k+1}^{\top}- \\ - \\ \vdots \\ u_{n}^{\top}-\end{array}\right]\left[\begin{array}{ccc}\mid & 1 & \mid \\ A v_{1} A v_{2} & A v_{k} A u_{u_{k+}} \cdots \\ \mid & 1 & 1\end{array}\right]$
$=\left[\begin{array}{c}-v_{1}^{\top}- \\ \vdots \\ -v_{k}^{\top} \\ -u_{k+1}^{\top}- \\ - \\ \vdots \\ u_{n}^{\top}-\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 1 \\ \lambda_{v_{1}} & \cdots & \lambda_{1} v_{k} A_{u_{k+1}}-\cdots \\ 1 & 1 & 1\end{array}\right]=\left[\begin{array}{cc}\text { Nice } & N_{i c} \\ \text { Nic } & \text { kemg } \\ & \end{array}\right.$

