Assignment 0

Submission Deadline: 24 September, 2024 at 23:59

Course Website: https://ti.inf.ethz.ch/ew/courses/LA24/index.html

Exercises

You can get feedback from your TA for Exercise 1 by handing in your solution as pdf via Moodle before the deadline.

- 1. Linear combinations of vectors (hand-in) (★☆☆)
 - a) Prove that every vector in \mathbb{R}^2 can be written as a linear combination of $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.
 - **b)** Consider the two vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ in \mathbb{R}^3 . Find a vector in \mathbb{R}^3 that cannot be written as a linear combination of \mathbf{v} and \mathbf{w} . Justify your answer.
- 2. The perfect long drink (in-class) (★☆☆)
 - a) Suppose that you would like to mix the perfect long drink from the two ingredients G and T. Your sources tell you that the perfect long drink is defined as 23ml of G and 77ml of T. Unfortunately, your friends already mixed two imperfect drinks: One with 15ml of G and 85ml of T, and another one with 35ml of G and 65ml of T. How can you use the two imperfect drinks to make one perfect drink?
 - b) One could model the set of all possible 100ml drinks mixed from G and T as

$$D\coloneqq\{\begin{bmatrix}g\\t\end{bmatrix}\in\mathbb{R}^2:g+t=100,g\geq0,t\geq0\}.$$

The two imperfect drinks are then represented by the vectors $\mathbf{v} = \begin{bmatrix} 15 \\ 85 \end{bmatrix} \in D$ and $\mathbf{w} = \begin{bmatrix} 35 \\ 65 \end{bmatrix} \in D$, respectively. Using this formulation, write down the set $\hat{D} \subseteq D$ of all $100 \mathrm{ml}$ drinks that you could mix from \mathbf{v} and \mathbf{w} . What geometric shape does this set have?

- c) Finally, we consider the set \overline{D} of drinks of any size that can be mixed from the two drinks v and w. What geometric shape does \overline{D} have?
- 3. Geometry of linear combinations (in-class) ($\bigstar \updownarrow \updownarrow)$

In this exercise, you are asked to sketch sets of points in \mathbb{R}^3 . No formal justification is required.

- a) Draw the set of linear combinations $\{\lambda_1 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} -2 \\ 2 \\ 2 \end{bmatrix} + \lambda_3 \begin{bmatrix} -3 \\ 3 \\ 3 \end{bmatrix} : \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}\}.$
- **b)** Draw the set of linear combinations $\{\lambda_1 \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} + \lambda_2 \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix} + \lambda_3 \begin{bmatrix} -3 \\ 3 \\ 3 \end{bmatrix} : \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \}.$
- c) Draw the set of linear combinations $\{\lambda_1 \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} + \lambda_2 \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix} + \lambda_3 \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} : \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}\}.$