Assignment 1

Submission Deadline: 01 October, 2024 at 23:59

Course Website: <https://ti.inf.ethz.ch/ew/courses/LA24/index.html>

Exercises

You can get feedback from your TA for Exercise 2 by handing in your solution as pdf via Moodle before the deadline.

- 1. Lines in \mathbb{R}^m (in-class) $(\bigstar \bigstar \Diamond)$
	- a) Let $0 \in \mathbb{R}^m$ denote the vector whose entries are all zero. We say that a set L is a line in \mathbb{R}^m if and only if there exists $w \in \mathbb{R}^m$ with $w \neq 0$ such that $L = \{\lambda w : \lambda \in \mathbb{R}\}\)$. Let now L be a line in \mathbb{R}^m and let u be an arbitrary non-zero element of L. Prove that $L = {\lambda \mathbf{u} : \lambda \in \mathbb{R}}$.
	- **b**) For two lines L_1 and L_2 in \mathbb{R}^m , prove that we have either $L_1 \cap L_2 = \{0\}$ or $L_1 \cap L_2 =$ $L_1 = L_2.$
- 2. Hyperplanes (hand-in) $(\bigstar \star \& \rangle)$

We call a set of vectors $H \subseteq \mathbb{R}^m$ a hyperplane of \mathbb{R}^m if and only if there exists a non-zero vector $\mathbf{d} \in \mathbb{R}^m$ such that $H = \{ \mathbf{v} \in \mathbb{R}^m : \mathbf{v} \cdot \mathbf{d} = 0 \}.$

a) Consider an arbitrary line L in \mathbb{R}^2 (according to the definition in Exercise 1). Prove that L is a hyperplane, i.e. find a vector $d \neq 0$ such that

$$
L = \{ \mathbf{v} \in \mathbb{R}^2 : \mathbf{v} \cdot \mathbf{d} = 0 \}.
$$

b) Consider the following set $S = \{v \in \mathbb{R}^m : v \cdot d = c\}$ for some vector $d \in \mathbb{R}^m$ and some non-zero constant $c \in \mathbb{R}$. Observe that S is not a hyperplane of \mathbb{R}^m because c is not zero. Finally, we also introduce the set

$$
S' = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \\ 1 \end{bmatrix} \in \mathbb{R}^{m+1} : \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix} \in S \right\}
$$

which is a subset of \mathbb{R}^{m+1} . Prove that S' is a subset of a hyperplane of \mathbb{R}^{m+1} .

3. Cauchy-Schwarz inequality $(\bigstar \bigstar \Diamond)$

Consider an arbitrary vector $\mathbf{v} \in \mathbb{R}^m$.

a) Prove the inequality

$$
\sum_{i=1}^m v_i \leq \sqrt{m} \|\mathbf{v}\|.
$$

b) Prove the inequality

$$
\sum_{i=1}^m \sqrt{i} v_i \leq m \|\mathbf{v}\|.
$$

4. Linear independence $(\bigstar \& \& \& \rangle$

a) Are the following three vectors in \mathbb{R}^3 linearly independent?

$$
\mathbf{u} = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}
$$

b) Are the following three vectors in \mathbb{R}^4 linearly independent?

$$
\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}
$$

5. Linear independence $(\bigstar \star \& \bigcirc)$

Let $e_1, \ldots, e_m \in \mathbb{R}^m$ be the standard unit vectors in \mathbb{R}^m . Consider the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_m \in \mathbb{R}^m$ with $\mathbf{v}_i \coloneqq \mathbf{e}_i + \mathbf{e}_{i+1}$ for all $i \in \{1, 2, \dots, m-1\}$ and $\mathbf{v}_m \coloneqq \mathbf{e}_m + \mathbf{e}_1$.

For example, we get

$$
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}
$$

in the case $m = 3$, and

$$
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}
$$

in the case $m = 4$.

- a) Prove that $\mathbf{v}_1, \dots, \mathbf{v}_m$ are linearly dependent if m is even.
- **b**) Prove that $\mathbf{v}_1, \dots, \mathbf{v}_m$ are linearly independent if m is odd.

6. Angle between two vectors $(\bigstar \bigstar \bigstar)$

Consider two non-zero vectors $\mathbf{v} =$ $\sqrt{ }$ $\overline{1}$ \overline{x} \hat{y} z 1 \int and $w =$ $\sqrt{ }$ $\overline{1}$ z \overline{x} \hat{y} 1 in \mathbb{R}^3 with $x + y + z = 0$. Determine the value of $cos(\alpha)$ where α denotes the angle between the two vectors v and w. You are not required

to compute (or look up) α , but you are of course welcome to do so.

7. Challenge 1.6 $(\star \star \star)$

This exercise asks you to solve Challenge 1.6 from the lecture notes (check it out for some guiding questions).

Let $\mathbf{v} = \begin{bmatrix} v_1 \\ v \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} w_1 \\ w \end{bmatrix}$ be arbitrary vectors in \mathbb{R}^2 and assume that $\mathbf{v} \neq \mathbf{0}$ and that $\mathbf{w} \neq \lambda \mathbf{v}$ v_2 and $w = |w_2|$ for all $\lambda \in \mathbb{R}$. Let $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ u_2 $\mathcal{E} \in \mathbb{R}^2$ be arbitrary. Prove that **u** can be written as a linear combination of v and w.