Assignment 1

Submission Deadline: 01 October, 2024 at 23:59

Course Website: https://ti.inf.ethz.ch/ew/courses/LA24/index.html

Exercises

You can get feedback from your TA for Exercise 2 by handing in your solution as pdf via Moodle before the deadline.

- 1. Lines in \mathbb{R}^m (in-class) (\bigstar
 - a) Let $\mathbf{0} \in \mathbb{R}^m$ denote the vector whose entries are all zero. We say that a set L is a line in \mathbb{R}^m if and only if there exists $\mathbf{w} \in \mathbb{R}^m$ with $\mathbf{w} \neq \mathbf{0}$ such that $L = \{\lambda \mathbf{w} : \lambda \in \mathbb{R}\}$. Let now L be a line in \mathbb{R}^m and let \mathbf{u} be an arbitrary non-zero element of L. Prove that $L = \{\lambda \mathbf{u} : \lambda \in \mathbb{R}\}$.
 - **b**) For two lines L_1 and L_2 in \mathbb{R}^m , prove that we have either $L_1 \cap L_2 = \{0\}$ or $L_1 \cap L_2 = L_1 = L_2$.
- 2. Hyperplanes (hand-in) (★★☆)

We call a set of vectors $H \subseteq \mathbb{R}^m$ a hyperplane of \mathbb{R}^m if and only if there exists a non-zero vector $\mathbf{d} \in \mathbb{R}^m$ such that $H = {\mathbf{v} \in \mathbb{R}^m : \mathbf{v} \cdot \mathbf{d} = 0}.$

a) Consider an arbitrary line L in \mathbb{R}^2 (according to the definition in Exercise 1). Prove that L is a hyperplane, i.e. find a vector $\mathbf{d} \neq \mathbf{0}$ such that

$$L = \{ \mathbf{v} \in \mathbb{R}^2 : \mathbf{v} \cdot \mathbf{d} = 0 \}.$$

b) Consider the following set $S = {\mathbf{v} \in \mathbb{R}^m : \mathbf{v} \cdot \mathbf{d} = c}$ for some vector $\mathbf{d} \in \mathbb{R}^m$ and some non-zero constant $c \in \mathbb{R}$. Observe that S is not a hyperplane of \mathbb{R}^m because c is not zero. Finally, we also introduce the set

$$S' = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \\ 1 \end{bmatrix} \in \mathbb{R}^{m+1} : \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix} \in S \right\}$$

which is a subset of \mathbb{R}^{m+1} . Prove that S' is a subset of a hyperplane of \mathbb{R}^{m+1} .

3. Cauchy-Schwarz inequality $(\bigstar \bigstar)$

Consider an arbitrary vector $\mathbf{v} \in \mathbb{R}^m$.

a) Prove the inequality

$$\sum_{i=1}^{m} v_i \le \sqrt{m} \, \| \, \mathbf{v} \, \| \, .$$

b) Prove the inequality

$$\sum_{i=1}^{m} \sqrt{i} v_i \le m \|\mathbf{v}\|.$$

4. Linear independence (★☆☆)

a) Are the following three vectors in \mathbb{R}^3 linearly independent?

$$\mathbf{u} = \begin{bmatrix} 3\\-6\\3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 1\\-3\\4 \end{bmatrix}$$

b) Are the following three vectors in \mathbb{R}^4 linearly independent?

$$\mathbf{u} = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$$

5. Linear independence $(\bigstar \bigstar)$

Let $\mathbf{e}_1, \ldots, \mathbf{e}_m \in \mathbb{R}^m$ be the standard unit vectors in \mathbb{R}^m . Consider the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_m \in \mathbb{R}^m$ with $\mathbf{v}_i \coloneqq \mathbf{e}_i + \mathbf{e}_{i+1}$ for all $i \in \{1, 2, \ldots, m-1\}$ and $\mathbf{v}_m \coloneqq \mathbf{e}_m + \mathbf{e}_1$.

For example, we get

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

in the case m = 3, and

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$

in the case m = 4.

- a) Prove that $\mathbf{v}_1, \ldots, \mathbf{v}_m$ are linearly dependent if m is even.
- **b**) Prove that $\mathbf{v}_1, \ldots, \mathbf{v}_m$ are linearly independent if m is odd.

6. Angle between two vectors $(\bigstar\bigstar\bigstar)$

Consider two non-zero vectors $\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} z \\ x \\ y \end{bmatrix}$ in \mathbb{R}^3 with x + y + z = 0. Determine the value of $\cos(\alpha)$ where α denotes the angle between the two vectors \mathbf{v} and \mathbf{w} . You are not required to compute (or look up) α , but you are of course welcome to do so.

7. Challenge 1.6 ($\bigstar \bigstar$)

This exercise asks you to solve Challenge 1.6 from the lecture notes (check it out for some guiding questions).

Let $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ be arbitrary vectors in \mathbb{R}^2 and assume that $\mathbf{v} \neq \mathbf{0}$ and that $\mathbf{w} \neq \lambda \mathbf{v}$ for all $\lambda \in \mathbb{R}$. Let $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbb{R}^2$ be arbitrary. Prove that \mathbf{u} can be written as a linear combination of \mathbf{v} and \mathbf{w} .