HS 2024

Assignment 3

Submission Deadline: 15 October, 2024 at 23:59

Course Website: https://ti.inf.ethz.ch/ew/courses/LA24/index.html

Exercises

You can get feedback and bonus points for Exercise 2 by handing in your solution as pdf via Moodle before the deadline.

1. Linear transformations (in-class) (★☆☆)

a) Let $n \in \mathbb{N}^+$. Consider the function $T : \mathbb{R}^n \to \mathbb{R}$ defined by

$$T(\mathbf{x}) \coloneqq \sum_{k=1}^{n} k x_k$$

for all $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$. Prove that T is a linear transformation.

b) Let $n \in \mathbb{N}^+$ with $n \ge 2$ be arbitrary. Consider the function $T : \mathbb{R}^n \to \mathbb{R}$ defined by

$$T(\mathbf{x}) \coloneqq \sum_{k=1}^{n} (x_k)^k$$

for all $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$. Is T a linear transformation?

2. Linear transformation (bonus, hand-in) (★☆☆)

Let $m, n \in \mathbb{N}^+$ and consider an arbitrary $m \times (n+1)$ matrix

$$A = \begin{bmatrix} | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n & \mathbf{v}_{n+1} \\ | & | & | & | \end{bmatrix}$$

with columns $\mathbf{v}_1, \ldots, \mathbf{v}_{n+1} \in \mathbb{R}^m$. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be the function defined by

$$T(\mathbf{x}) \coloneqq A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ 1 \end{bmatrix}$$

for all $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$. Prove that *T* is a linear transformation if and only if $\mathbf{v}_{n+1} = \mathbf{0}$.

3. Rotation matrices $(\bigstar \bigstar)$

Hint: This exercise requires some basic knowledge of sin and cos. Part c) can also be solved independently by assuming parts a) and b).

a) We define a real 2×2 matrix A to be a *rotation matrix* if and only if there exists a rotation angle $\phi \in \mathbb{R}$ such that

$$A = Q(\phi) \coloneqq \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}.$$

Prove that the matrix

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

is a rotation matrix according to this definition.

b) Show that the matrix product $Q(\phi_1) Q(\phi_2)$ of two rotation matrices with angles ϕ_1 and ϕ_2 is again a rotation matrix $Q(\phi_3)$ according to this definition, and determine the corresponding rotation angle ϕ_3 .

Hint: You might need to review trigonometric formulas to solve this question.

c) Let A be a 2×2 rotation matrix. Prove that there exists a 2×2 matrix B such that AB = BA = I.

4. Product of triangular matrices $(\bigstar \bigstar)$

- a) Let A and B be $m \times m$ lower triangular matrices. Prove that AB is lower triangular.
- b) Let A and B be $m \times m$ upper triangular matrices. Prove that AB is upper triangular. *Hint: Use the statement from subtask a*).

5. Linear transformations $(\bigstar \bigstar)$

a) Consider the linear transformation given by the matrix

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Describe the geometric operation that this linear transformation corresponds to.

b) Consider the line $L = \{\lambda \mathbf{v} : \lambda \in \mathbb{R}\} \subseteq \mathbb{R}^3$ with $\mathbf{v} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^\top$. Find a matrix $A \in \mathbb{R}^{3 \times 3}$ that corresponds to rotating vectors by 180° around the axis L.

Hint: *Try to find out what* Ae_1 , Ae_2 , *and* Ae_3 *should be.*

6. Reconstruct a linear transformation $(\bigstar \bigstar)$

a) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\\2\end{bmatrix}, T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}2\\3\\2\end{bmatrix}.$$

Determine the general formula for $T\left(\begin{bmatrix} x \\ y \end{bmatrix} \right)$ with $x, y \in \mathbb{R}$.

b) Find a matrix A such that $T_A = T$.

7. Embedding a line in R^m (\bigstar

Let $\mathbf{v} \in \mathbb{R}^m$ be non-zero and consider the line $L = \{\lambda \mathbf{v} : \lambda \in \mathbb{R}\}$. Prove that there is a linear transformation $T : \mathbb{R} \to \mathbb{R}^m$ with $\{T(\mathbf{x}) : \mathbf{x} \in \mathbb{R}\} = L$ (i.e. the image of T is exactly L).