Assignment 4

Submission Deadline: 22 October, 2024 at 23:59

Course Website: https://ti.inf.ethz.ch/ew/courses/LA24/index.html

Exercises

You can get feedback from your TA for Exercise 2 by handing in your solution as pdf via Moodle before the deadline.

1. Solving linear systems (in-class) ($\bigstar : \mathbb{R} \to \mathbb{R}$ be a polynomial of degree at most 2, i.e. $p(x) = ax^2 + bx + c$ for some coefficients $a, b, c \in \mathbb{R}$. Assume that we already know p(-1) = 0, p(0) = 2 and p(1) = 2. Find the coefficients a, b and c. As the title suggests, you will have to solve a linear system. We recommend that you do it by using the systematic elimination procedure from the lecture.

2. Invertibility (hand-in) (★☆☆)

Let $A \in \mathbb{R}^{3 \times 3}$ be the following upper triangular matrix with $a, b, c, d \in \mathbb{R}$:

$$A = \begin{pmatrix} a & b & c \\ 0 & 1 & d \\ 0 & 0 & 1 \end{pmatrix}.$$

For which values of a, b, c, d is A invertible? Specify A^{-1} for these cases.

3. Matrix inverse (★☆☆)

a) Consider the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and the standard unit vectors $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Find the solutions $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{R}^3$ for the three systems $A\mathbf{x}_1 = \mathbf{e}_1$, $A\mathbf{x}_2 = \mathbf{e}_2$, $A\mathbf{x}_3 = \mathbf{e}_3$.

- **b**) What is the inverse A^{-1} of A?
- c) What is the inverse D^{-1} of the diagonal matrix $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$?
- **d**) What is the inverse B^{-1} of the matrix $B = \begin{bmatrix} 0 & 0 & 2 \\ 3 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{bmatrix}$?

4. Matrix inverse (★★☆)

- a) Let A be an $m \times m$ matrix with inverse A^{-1} and let $k \in \mathbb{N}^+$ be an arbitrary integer. Does A^k have an inverse and if yes, what is it?
- b) Recall the definition of a nilpotent matrix: We say that a square matrix A is nilpotent if and only if there exists $k \in \mathbb{N}$ such that $A^k = 0$. Prove that a nilpotent matrix A cannot have an inverse.
- c) Let A be an $m \times m$ matrix with $A^3 = I$ and $A^4 = I$. Prove that A = I.
- **d**) Find a 2×2 matrix $A \neq I$ such that $A^k = I$ for all even k and $A^k = A$ for all odd $k \in \mathbb{N}$.
- e) Can you also find a 2×2 matrix A that, for all $k \in \mathbb{N}$, satisfies $A^k = I$ if and only if $k \equiv_4 0$ (i.e. $A^k = I$ if and only if k is a multiple of 4)?

5. Exercise 3.12 ($\bigstar \bigstar$)

Given two $m \times m$ matrices A and B with AB = I, prove that BA = I. You can either try to solve this directly or proceed according to the following subtasks, which should guide you through the proof.

- a) Prove that the columns of B are linearly independent, i.e. B has rank m.
- **b**) Use a) to prove that the columns of A are also linearly independent.
- c) Use b) to prove that BA I = 0.

6. Inverse of triangular matrices $(\bigstar \bigstar)$

- **a**) Find the inverse of the 2×2 matrix $L = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix}$ where $a \in \mathbb{R}$.
- **b**) Prove that a square lower triangular matrix is invertible if and only if all its diagonal entries are non-zero.
- c) Prove that the inverse of any lower triangular matrix, if it exists, is lower triangular itself.
- d) Are the statements of b) and c) also true if we replace *lower triangular* by *upper triangular*?