Assignment 6

Submission Deadline: 05 November, 2024 at 23:59

Course Website: https://ti.inf.ethz.ch/ew/courses/LA24/index.html

Exercises

You can get feedback from your TA and bonus points for Exercise 2 by handing in your solution as pdf via Moodle before the deadline.

1. Subspaces of vector spaces (in-class) $(\bigstar \bigstar)$

- a) Let *H* be a hyperplane of \mathbb{R}^m . Recall that this means that there exists a non-zero vector $\mathbf{d} \in \mathbb{R}^m$ with $H = \{\mathbf{v} \cdot \mathbf{d} = 0 : \mathbf{v} \in \mathbb{R}^m\}$. Prove that *H* is a subspace of \mathbb{R}^m .
- **b**) Consider again a hyperplane H of \mathbb{R}^m . Prove that the dimension of H is m-1.
- c) In this exercise we consider the vector space V of all real-valued functions on the interval [0, 1]. In other words, every element $\mathbf{f} \in V$ is a function $\mathbf{f} : [0, 1] \to \mathbb{R}$ and conversely, every function $\mathbf{f} : [0, 1] \to \mathbb{R}$ is in V. Note that it might not be obvious that this is a vector space, but for the purpose of this exercise you can assume that it is. In particular, there exists a valid addition $\mathbf{f} + \mathbf{g}$ of such functions $\mathbf{f} \in V$ and $\mathbf{g} \in V$, and a valid scalar multiplication $c\mathbf{f}$ for a scalar $c \in \mathbb{R}$ and $\mathbf{f} \in V$ defined as follows:

$$\begin{aligned} (\mathbf{f} + \mathbf{g})(x) &\coloneqq \mathbf{f}(x) + \mathbf{g}(x) & \text{for all } \mathbf{f}, \mathbf{g} \in V \text{ and } x \in [0, 1] \\ (c\mathbf{f})(x) &\coloneqq c\mathbf{f}(x) & \text{for all } \mathbf{f} \in V, x \in [0, 1] \text{ and } c \in \mathbb{R}. \end{aligned}$$

Prove that

$$U = \{ \mathbf{f} \in V : \mathbf{f}(x) = \mathbf{f}(1-x) \text{ for all } x \in [0,1] \} \subseteq V$$

is a subspace of V.

2. Subspace of matrices (bonus, hand-in) $(\bigstar \bigstar)$

Let $m \in \mathbb{N}^+$. Fix an arbitrary non-zero vector $\mathbf{v} \in \mathbb{R}^m$ and consider the set of matrices $S^{\mathbf{v}} := \{A \in \mathbb{R}^{2 \times m} : A\mathbf{v} = \mathbf{0}\} \subseteq \mathbb{R}^{2 \times m}$. It is not hard to show that $S^{\mathbf{v}}$ is a subspace of $\mathbb{R}^{2 \times m}$ (you do not have to show this, you can assume it without proof). What is the dimension of $S^{\mathbf{v}}$? Prove your answer.

Hint: You can use the statements from exercise 1a) and 1b) without proof, even if you did not solve them.

3. Subspaces (★★☆)

Let V be a vector space and let U and W be subspaces of V. Show that $U \cup W$ is a subspace of V if and only if $U \subseteq W$ or $W \subseteq U$.

4. Symmetric matrices $(\bigstar \bigstar)$

Let $m \in \mathbb{N}^+$ be arbitrary. Consider the set of symmetric $m \times m$ matrices \mathcal{S}_m which is a subspace of $\mathbb{R}^{m \times m}$. What is the dimension of \mathcal{S}_m ?

5. Odd and even functions $(\bigstar \bigstar \bigstar)$

In this exercise, we consider the vector space V of all real-valued functions on \mathbb{R} . In other words, every element $\mathbf{f} \in V$ is a function $\mathbf{f} : \mathbb{R} \to \mathbb{R}$ and conversely, every function $\mathbf{f} : \mathbb{R} \to \mathbb{R}$ is in V. Note that it might not be obvious that this is a vector space, but for the purpose of this exercise you can assume that it is. In particular, there exists a valid addition $\mathbf{f} + \mathbf{g}$ of such functions $\mathbf{f} \in V$ and $\mathbf{g} \in V$, and a valid scalar multiplication $c\mathbf{f}$ for a scalar $c \in \mathbb{R}$ and $\mathbf{f} \in V$ defined as follows:

$$\begin{aligned} (\mathbf{f} + \mathbf{g})(x) &\coloneqq \mathbf{f}(x) + \mathbf{g}(x) & \text{for all } \mathbf{f}, \mathbf{g} \in V \text{ and } x \in \mathbb{R} \\ (c\mathbf{f})(x) &\coloneqq c\mathbf{f}(x) & \text{for all } \mathbf{f} \in V, x \in \mathbb{R} \text{ and } c \in \mathbb{R}. \end{aligned}$$

Now consider the set of odd functions

$$O = \{ \mathbf{f} \in V : \mathbf{f}(-x) = -\mathbf{f}(x) \text{ for all } x \in \mathbb{R} \}$$

and the set of even functions

$$E = \{ \mathbf{f} \in V : \mathbf{f}(-x) = \mathbf{f}(x) \text{ for all } x \in \mathbb{R} \}.$$

- **a)** Prove that both O and E are subspaces of V.
- **b**) Prove that the intersection $O \cap E$ contains only the zero function $\mathbf{0} : \mathbb{R} \to \mathbb{R}$ with $\mathbf{0}(x) = 0$ for all $x \in \mathbb{R}$.
- c) Prove that any function $\mathbf{f} \in V$ can be written as $\mathbf{f} = \mathbf{g} + \mathbf{h}$ for some $\mathbf{g} \in E$ and $\mathbf{h} \in O$.

6. Basis of subspace of polynomials (★☆☆)

Consider the three polynomials $\mathbf{p}, \mathbf{q}, \mathbf{r} \in \mathbb{R}[x]$ defined as

$$\mathbf{p} = x^3 + x$$
, $\mathbf{q} = x^2 + 1$, $\mathbf{r} = x^2 + x + 1$.

What is the dimension of $\text{Span}(\mathbf{p}, \mathbf{q}, \mathbf{r}) \subseteq \mathbb{R}[x]$? Prove your answer.

- 7. 1. Let U_1, U_2 be arbitrary subspaces of \mathbb{R}^m . Which of the following subsets of \mathbb{R}^m must be subspaces of \mathbb{R}^m as well?
 - (a) $U_1 \cap U_2$
 - (**b**) $U_1 \cup U_2$
 - (c) $U_1 \setminus U_2 := \{ \mathbf{u} \in U_1 : \mathbf{u} \notin U_2 \}$
 - (**d**) Ø
 - (e) $\{0\}$
 - (f) $U_1 + U_2 := \{\mathbf{u}_1 + \mathbf{u}_2 : \mathbf{u}_1 \in U_1, \mathbf{u}_2 \in U_2\}$
 - 2. Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 7\\6\\5\\4 \end{bmatrix}$.

Which of the following sets of vectors is a basis of \mathbb{R}^4 ?

(a)

$$\left\{ \mathbf{v}_1, \quad \mathbf{v}_2, \quad \begin{bmatrix} 1\\0\\-2\\0 \end{bmatrix}, \quad \begin{bmatrix} 0\\1\\2\\0 \end{bmatrix}, \quad \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$$

(b)

$$\left\{ \mathbf{v}_1, \quad \mathbf{v}_2, \quad \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \quad \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} \right\}$$

(**c**)

$\left\{ \mathbf{v}_{1},\right.$	$\mathbf{v}_2,$	$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix},$	$\left[\begin{array}{c}0\\1\\0\\0\end{array}\right]\right\}$
l			[0])

3. Which of the following matrices are in row echelon form?

(a)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0 0 0	$2 \\ 1 \\ 0$	$\begin{array}{c} 4\\5\\0 \end{array}$
(b)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$2 \\ 1 \\ 0$	$\begin{bmatrix} 4 \\ 5 \\ 0 \end{bmatrix}$
(c)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0 0 0	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$\begin{bmatrix} 4 \\ 5 \\ 0 \end{bmatrix}$
(d)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	2 1 1	$\begin{bmatrix} 4 \\ 5 \\ 0 \end{bmatrix}$