Assignment 8

Submission Deadline: 19 November, 2024 at 23:59

Course Website: https://ti.inf.ethz.ch/ew/courses/LA24/index.html

Exercises

You can get feedback from your TA for Exercise 2 by handing in your solution as pdf via Moodle before the deadline.

1. Linear regression (in-class) (★☆☆)

In this task, we want to determine the parameters of a certain model function from a few measured values. In particular, assume that we measured the following values

t_i	1	2	3	4	5
b_i	2	3	5	6	8

where $i \in [5]$. Moreover, assume that we want to model the relationship between t, b by a function f, i.e. b = f(t). We have seen before (in previous assignments) that we could choose f to be a polynomial of large enough degree to then interpolate all datapoints. But depending on the application, choosing f to be a high degree polynomial might not be desirable. In particular, we might want to restrict the degree of f. In this exercise, we restrict f to be a line, i.e. f should have the form

$$f(t) = \alpha_1 t + \alpha_0$$

for parameters $\alpha_1, \alpha_0 \in \mathbb{R}$. Our goal is to find suitable values for α_1, α_0 . As discussed in the lecture, this idea of fitting a line through a set of datapoints is called linear regression.

- a) For each datapoint (t_i, b_i) with $i \in [5]$, we get an equation for α_1, α_0 from $f(t_i) = b_i$. Write down the system of linear equations that we get by combining all five equations.
- **b**) Do you expect this system to have any solutions? (Answer this intuitively without actually solving the system).
- c) Using the normal equations, find an approximate solution to the system you wrote down.

2. Weighted linear regression (hand-in) $(\bigstar \bigstar)$

Assume we are given $m \in \mathbb{N}^+$ datapoints $(t_1, b_1), \ldots, (t_m, b_m)$ where $t_k, b_k \in \mathbb{R}$ for all $k \in [m]$. For convenience, we define

$$A \coloneqq \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \text{ and } \mathbf{b} \coloneqq \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

Assume that we are additionally given $\lambda_1, \ldots, \lambda_m \in \mathbb{R}^+$ (i.e. $\lambda_i > 0$ for all $i \in [m]$), and let $\Lambda \in \mathbb{R}^{m \times m}$ denote the diagonal matrix with $\lambda_1, \ldots, \lambda_m$ on its diagonal. The goal of this exercise is to find α_0 and α_1 in \mathbb{R} such that

$$\sum_{k=1}^{m} \lambda_k (b_k - (\alpha_0 + \alpha_1 t_k))^2$$

is minimized. Intuitively speaking, the weights $\lambda_1, \ldots, \lambda_m \in \mathbb{R}^+$ are used to put an emphasize on some datapoints that we think of as more important. For example, if λ_i is large for some $i \in [m]$ (relative to the other weights), this means that is it relatively important for us to get close to this datapoint.

a) Under the assumption that $A^{\top}AA$ is invertible, prove that the optimal choice for α_0 and α_1 is given by

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} = (A^{\top} \Lambda A)^{-1} A^{\top} \Lambda \mathbf{b}.$$

b) Prove that $A^{\top}AA$ is invertible if and only if $A^{\top}A$ is invertible.

3. A linear transformation $(\bigstar \bigstar)$

Let $\mathbf{v} \in \mathbb{R}^2$ be a unit vector. Consider the linear transformation given by the matrix $A = I - 2\mathbf{v}\mathbf{v}^\top$. Geometrically speaking, does applying A correspond to stretching, shearing, rotating, or mirroring vectors? Justify your answer.

4. Fitting a line $(\bigstar \bigstar \bigstar)$

This task includes Challenge 7 from the lecture notes.

Assume we are given $m \ge 2$ distinct datapoints $(t_1, b_1), \ldots, (t_m, b_m)$ where $t_k, b_k \in \mathbb{R}$ for all $k \in [m]$ (distinct means that we have $t_i \ne t_j$ for all $i \ne j$ with $i, j \in [m]$). Using the least squares method, we want to find a line described by two parameters $\alpha_0, \alpha_1 \in \mathbb{R}$ such that we have

$$b_k \approx \alpha_0 + \alpha_1 t_k$$

for all $k \in [m]$. More concretely, we want to solve the optimization problem

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^2} ||A\boldsymbol{\alpha} - \mathbf{b}||^2 = \min_{\alpha_0, \alpha_1 \in \mathbb{R}} \sum_{k=1}^m (b_k - (\alpha_0 + \alpha_1 t_k))^2$$

where

$$\boldsymbol{\alpha} = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}, \quad A = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix}.$$

Remark 5.3.3 in the lecture notes gives the closed form solution

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} = \begin{bmatrix} \frac{1}{m} \sum_{k=1}^m b_k \\ (\sum_{k=1}^m t_k b_k) / (\sum_{k=1}^m t_k^2) \end{bmatrix}$$

for this problem under the additional assumption that $\sum_{k=1}^{m} t_k = 0$. In this exercise, we want to use this to find a closed form solution for the general case, i.e. we want to drop the assumption $\sum_{k=1}^{m} t_k = 0$.

a) Let $c \in \mathbb{R}$ be some constant and consider new datapoints $(t'_1, b_1), \ldots, (t'_m, b_m)$ with $t'_k = t_k + c$ for all $k \in [m]$. This gives us a new optimization problem

$$\min_{\boldsymbol{\alpha}' \in \mathbb{R}^2} ||A'\boldsymbol{\alpha}' - \mathbf{b}||^2 = \min_{\alpha_0', \alpha_1' \in \mathbb{R}} \sum_{k=1}^m (b_k - (\alpha_0' + \alpha_1' t_k'))^2$$

where

$$\boldsymbol{\alpha}' = \begin{bmatrix} \alpha'_0 \\ \alpha'_1 \end{bmatrix}, \quad A' = \begin{bmatrix} 1 & t'_1 \\ \vdots & \vdots \\ 1 & t'_m \end{bmatrix}$$

Intuitively speaking, how do the optimal solutions α and α' of the two optimization problems compare? Do we expect to have $\alpha_0 = \alpha'_0$? Do we expect to have $\alpha_1 = \alpha'_1$? Give a brief intuitive argument.

- **b)** As discussed in the lecture notes, we want to set $c = -\frac{1}{m} \sum_{k=1}^{m} t_k$ so that the columns of A' will be orthogonal. Verify that this is indeed the case, i.e. verify that the columns of A' defined as above with $c = -\frac{1}{m} \sum_{k=1}^{m} t_k$ are orthogonal.
- c) Given α' such that $||A'\alpha' \mathbf{b}||^2$ is minimized (i.e. α' is an optimal solution), prove that

$$\boldsymbol{lpha} = \boldsymbol{lpha}' + \begin{bmatrix} c lpha'_1 \\ 0 \end{bmatrix}$$

minimizes $||A\alpha - \mathbf{b}||^2$ (i.e. α is an optimal solution for the original problem).

Hint: *This subtask gives away the answer to a*), *but make sure that you have some intuition of why we expect* $\alpha'_1 = \alpha_1$.

d) Note that by subtask b), we can use the closed form solution from Remark 5.3.3 to solve

$$\min_{\boldsymbol{\alpha}'\in\mathbb{R}^2}||A'\boldsymbol{\alpha}'-\mathbf{b}||^2.$$

Combine this with subtask c) to get a closed form solution for the original problem

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^2}||A\boldsymbol{\alpha}-\mathbf{b}||^2 = \min_{\alpha_0,\alpha_1\in\mathbb{R}}\sum_{k=1}^m (b_k - (\alpha_0 + \alpha_1 t_k))^2.$$

You do not need to simplify the formula you get.

5. Subspaces with intersection $\{0\}$ (\bigstar

Let U, W be subspaces of a vector space V satisfying $U \cap W = \{0\}$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_n$ be a set of n linearly independent vectors in U, and let $\mathbf{w}_1, \ldots, \mathbf{w}_m$ be a set of m linearly independent vectors in W. Prove that the set of n + m vectors $\mathbf{u}_1, \ldots, \mathbf{u}_n, \mathbf{w}_1, \ldots, \mathbf{w}_m$ is linearly independent in V.

Hint: Note that this statement is formulated for vector spaces in general. If you are unsure with arguing about arbitrary vector spaces, consider first proving it for the special case $V = \mathbb{R}^k$ for some $k \ge m + n$.

6. Solutions in row space (★☆☆)

Let $A \in \mathbb{R}^{m \times n}$ be arbitrary, and consider arbitrary $\mathbf{b} \in \mathbb{R}^m$ such that $A\mathbf{x} = \mathbf{b}$ for some $\mathbf{x} \in \mathbb{R}^n$ (i.e. the system is feasible). Prove that there exists a unique $\mathbf{x}^* \in \mathbf{R}(A) = \mathbf{C}(A^{\top})$ with $A\mathbf{x}^* = \mathbf{b}$.