Solution for Assignment 0

1. Linear combinations of vectors (★☆☆)

a) Consider an arbitrary vector $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in \mathbb{R}^2$. We define $\lambda \coloneqq \frac{b_1 + b_2}{2}$ and $\mu \coloneqq \frac{b_2 - b_1}{2}$. Then we have

$$\lambda \mathbf{v} + \mu \mathbf{w} = \begin{bmatrix} \lambda - \mu \\ \lambda + \mu \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \mathbf{b}$$
 (1)

which proves that **b** can be written as a linear combination of **v** and **w**. While this proves the claim and is considered a complete solution, let us also explain how to find out that we should pick $\lambda := \frac{b_1 + b_2}{2}$ and $\mu := \frac{b_2 - b_1}{2}$. For this, assume that we do not know yet what values λ and μ should have. We can still write down Equation 1, interpreting λ and μ as unknowns. In fact, this gives us a system of two equations

$$\lambda - \mu = b_1$$
$$\lambda + \mu = b_2,$$

one for each coordinate. Adding the two equations we obtain $2\lambda = b_1 + b_2$ and hence $\lambda = \frac{b_1 + b_2}{2}$. On the other hand, subtracting the first equation from the second gives $2\mu = b_2 - b_1$ and hence $\mu = \frac{b_2 - b_1}{2}$. One can also think about this geometrically (see Figure 1), analogous to the "row picture" from Section 1.1.3 in the lecture notes.

Figure 1: The lines given by the two equations intersect at $(\frac{b_1+b_2}{2}, \frac{b_2-b_1}{2})$.

b) Consider the vector $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \in \mathbb{R}^3$. In order to write it as a linear combination of \mathbf{v} and \mathbf{w} , we would have to find $\lambda, \mu \in \mathbb{R}$ such that

$$\lambda \mathbf{v} + \mu \mathbf{w} = \lambda \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \mu \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \stackrel{!}{=} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \mathbf{b}.$$

Each coordinate provides a constraint on the values of λ and μ . In particular, from the first coordinate we get the constraint $\lambda=0$, from the second coordinate we get the constraint $\mu=1$, and from the third coordinate we get $\lambda+\mu=0$. This system of three equations in

two unknowns does not have a solution and hence we conclude that \mathbf{b} cannot be written as a linear combination of \mathbf{v} and \mathbf{w} .

2. The perfect long drink (★☆☆)

a) Mixing $\frac{3}{5}$ of the first imperfect drink with $\frac{2}{5}$ of the second imperfect drink will yield a perfect drink. To see this, represent the imperfect drinks as vectors $\begin{bmatrix} 15 \\ 85 \end{bmatrix} \in \mathbb{R}^2$ and $\begin{bmatrix} 35 \\ 65 \end{bmatrix} \in \mathbb{R}^2$, and the perfect drink as $\begin{bmatrix} 23 \\ 77 \end{bmatrix} \in \mathbb{R}^2$. It remains to check that

$$\frac{3}{5} \begin{bmatrix} 15\\85 \end{bmatrix} + \frac{2}{5} \begin{bmatrix} 35\\65 \end{bmatrix} = \begin{bmatrix} 23\\77 \end{bmatrix}.$$

While this is already a full solution, we describe again how one could arrive at $\frac{3}{5}$ and $\frac{2}{5}$, respectively. We want to find λ and μ such that

$$\lambda \begin{bmatrix} 15\\85 \end{bmatrix} + \mu \begin{bmatrix} 35\\65 \end{bmatrix} = \begin{bmatrix} 23\\77 \end{bmatrix}.$$

This gives us the two equations

$$15\lambda + 35\mu = 23$$
$$85\lambda + 65\mu = 77$$

which can be solved in various ways. One way is to add the two equations to get $100\lambda + 100\mu = 100$ and thus $\lambda + \mu = 1$. Now plug in $\lambda = 1 - \mu$ into the first equation to get $\mu = \frac{2}{5}$ and hence $\lambda = 1 - \mu = \frac{3}{5}$.

b) The set \hat{D} can be written down as

$$\hat{D} = \{ \lambda \mathbf{v} + \mu \mathbf{w} \in \mathbb{R}^2 : \lambda \ge 0, \mu \ge 0, \lambda + \mu = 1 \}.$$

In words, \hat{D} consists of all vectors that can be written as linear combinations $\lambda \mathbf{v} + \mu \mathbf{w}$ that additionally satisfy $\lambda \geq 0$, $\mu \geq 0$ and $\lambda + \mu = 1$. We need the constraints $\lambda \geq 0$ and $\mu \geq 0$ because we cannot use a negative amount of one of the drinks. Moreover, we need to make sure that we are mixing a drink of size 100ml, hence the constraint $\lambda + \mu = 1$. In math lingo, \hat{D} is the set of convex combinations of \mathbf{v} and \mathbf{w} (see Definition 1.7 in the lecture notes). Geometrically, \hat{D} has the shape of a line segment that connects the points \mathbf{v} and \mathbf{w} (see also Figure 1.10 in the lecture notes).

c) Since the mixed drink does not need to contain exactly $100 \mathrm{ml}$ anymore, we can get rid of the constraint $\lambda + \mu = 1$. But we still cannot use v and w more than once each, i.e. we need to include the constraints $\lambda \leq 1$ and $\mu \leq 1$ instead. We get the parallelogram (see Figure 2)

$$\overline{D} = \{ \lambda \mathbf{v} + \mu \mathbf{w} \in \mathbb{R}^2 : 0 \le \lambda \le 1, 0 \le \mu \le 1 \}.$$

3. Geometry of linear combinations (★☆☆)

This example was taken from the lecture notes (Figure 1.22). The set in a) has the shape of a line, the set in b) the shape of a plane, and the set in c) is all of \mathbb{R}^3 .

2

Figure 2: A sketch of the situation with the two imperfect drinks ${\bf v}$ and ${\bf w}$. The set D is shown as a dotted line between the two axis. The set \hat{D} is shown in bold connecting ${\bf v}$ and ${\bf w}$. The set \overline{D} is the parallelogram. We can see in the picture that any linear combination $\lambda {\bf v} + \mu {\bf w}$ with $0 \le \lambda \le 1$ and $0 \le \mu \le 1$ must land inside the parallelogram. Moreover, any point inside the parallelogram can be reached by choosing λ and μ appropriately. The argument for this is given in the "column picture" from Section 1.1.3 of the lecture notes.

Figure 3: Solutions to 3a, 3b, and 3c, respectively.