Solution for Assignment 0

1. Linear combinations of vectors

a) Consider an arbitrary vector **b** = $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ $b₂$ $\Big] \in \mathbb{R}^2$. We define $\lambda \coloneqq \frac{b_1+b_2}{2}$ and $\mu \coloneqq \frac{b_2-b_1}{2}$. Then we have

$$
\lambda \mathbf{v} + \mu \mathbf{w} = \begin{bmatrix} \lambda - \mu \\ \lambda + \mu \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \mathbf{b}
$$
 (1)

which proves that b can be written as a linear combination of v and w. While this proves the claim and is considered a complete solution, let us also explain how to find out that we should pick $\lambda := \frac{b_1 + b_2}{2}$ and $\mu := \frac{b_2 - b_1}{2}$. For this, assume that we do not know yet what values λ and μ should have. We can still write down Equation [1,](#page-0-0) interpreting λ and μ as unknowns. In fact, this gives us a system of two equations

$$
\lambda - \mu = b_1
$$

$$
\lambda + \mu = b_2,
$$

one for each coordinate. Adding the two equations we obtain $2\lambda = b_1 + b_2$ and hence $\lambda =$ $\frac{b_1+b_2}{2}$. On the other hand, subtracting the first equation from the second gives $2\mu = b_2 - b_1$ and hence $\mu = \frac{b_2 - b_1}{2}$. One can also think about this geometrically (see Figure [1\)](#page-0-1), analogous to the "row picture" from Section 1.1.3 in the lecture notes.

Figure 1: The lines given by the two equations intersect at $(\frac{b_1+b_2}{2}, \frac{b_2-b_1}{2})$.

b) Consider the vector $\mathbf{b} =$ $\sqrt{ }$ $\overline{1}$ $\overline{0}$ 1 0 1 $\in \mathbb{R}^3$. In order to write it as a linear combination of **v** and **w**, we would have to find $\lambda, \mu \in \mathbb{R}$ such that

$$
\lambda \mathbf{v} + \mu \mathbf{w} = \lambda \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \mu \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \stackrel{!}{=} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \mathbf{b}.
$$

Each coordinate provides a constraint on the values of λ and μ . In particular, from the first coordinate we get the constraint $\lambda = 0$, from the second coordinate we get the constraint $\mu = 1$, and from the third coordinate we get $\lambda + \mu = 0$. This system of three equations in

two unknowns does not have a solution and hence we conclude that b cannot be written as a linear combination of v and w.

2. The perfect long drink $(\bigstar \& \& \rangle$

a) Mixing $\frac{3}{5}$ of the first imperfect drink with $\frac{2}{5}$ of the second imperfect drink will yield a perfect drink. To see this, represent the imperfect drinks as vectors $\begin{bmatrix} 15 \\ 85 \end{bmatrix} \in \mathbb{R}^2$ and $\begin{bmatrix} 35 \\ 65 \end{bmatrix} \in \mathbb{R}^2$, and the perfect drink as $\begin{bmatrix} 23 \\ 77 \end{bmatrix} \in \mathbb{R}^2$. It remains to check that

$$
\frac{3}{5} \begin{bmatrix} 15 \\ 85 \end{bmatrix} + \frac{2}{5} \begin{bmatrix} 35 \\ 65 \end{bmatrix} = \begin{bmatrix} 23 \\ 77 \end{bmatrix}.
$$

While this is already a full solution, we describe again how one could arrive at $\frac{3}{5}$ and $\frac{2}{5}$, respectively. We want to find λ and μ such that

$$
\lambda \begin{bmatrix} 15 \\ 85 \end{bmatrix} + \mu \begin{bmatrix} 35 \\ 65 \end{bmatrix} = \begin{bmatrix} 23 \\ 77 \end{bmatrix}.
$$

This gives us the two equations

$$
15\lambda + 35\mu = 23
$$

$$
85\lambda + 65\mu = 77
$$

which can be solved in various ways. One way is to add the two equations to get 100λ + $100\mu = 100$ and thus $\lambda + \mu = 1$. Now plug in $\lambda = 1 - \mu$ into the first equation to get $\mu = \frac{2}{5}$ 5 and hence $\lambda = 1 - \mu = \frac{3}{5}$ $\frac{3}{5}$.

b) The set \hat{D} can be written down as

$$
\hat{D} = \{\lambda \mathbf{v} + \mu \mathbf{w} \in \mathbb{R}^2 : \lambda \ge 0, \mu \ge 0, \lambda + \mu = 1\}.
$$

In words, \hat{D} consists of all vectors that can be written as linear combinations $\lambda \mathbf{v} + \mu \mathbf{w}$ that additionally satisfy $\lambda \geq 0$, $\mu \geq 0$ and $\lambda + \mu = 1$. We need the constraints $\lambda \geq 0$ and $\mu \geq 0$ because we cannot use a negative amount of one of the drinks. Moreover, we need to make sure that we are mixing a drink of size 100ml, hence the constraint $\lambda + \mu = 1$. In math lingo, \ddot{D} is the set of convex combinations of **v** and **w** (see Definition 1.7 in the lecture notes). Geometrically, D has the shape of a line segment that connects the points \bf{v} and \bf{w} (see also Figure 1.10 in the lecture notes).

c) Since the mixed drink does not need to contain exactly 100ml anymore, we can get rid of the constraint $\lambda + \mu = 1$. But we still cannot use v and w more than once each, i.e. we need to include the constraints $\lambda \leq 1$ and $\mu \leq 1$ instead. We get the parallelogram (see Figure [2\)](#page-2-0)

$$
\overline{D} = \{ \lambda \mathbf{v} + \mu \mathbf{w} \in \mathbb{R}^2 : 0 \le \lambda \le 1, 0 \le \mu \le 1 \}.
$$

3. Geometry of linear combinations $(\bigstar \& \& \rangle$

This example was taken from the lecture notes (Figure 1.22). The set in a) has the shape of a line, the set in b) the shape of a plane, and the set in c) is all of \mathbb{R}^3 .

Figure 2: A sketch of the situation with the two imperfect drinks v and w. The set D is shown as a dotted line between the two axis. The set \hat{D} is shown in bold connecting v and w. The set \overline{D} is the parallelogram. We can see in the picture that any linear combination $\lambda v + \mu w$ with $0 \le \lambda \le 1$ and $0 \leq \mu \leq 1$ must land inside the parallelogram. Moreover, any point inside the parallelogram can be reached by choosing λ and μ appropriately. The argument for this is given in the "column picture" from Section 1.1.3 of the lecture notes.

Figure 3: Solutions to 3a, 3b, and 3c, respectively.