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Solution for Assignment 10

1. a) Consider the matrix M := AB. We claim that it has rank(M) = n. To see this, observe
that rank(B) = n implies C(B) = Rn because n is also the number of rows of B. Hence,
we get C(M) = C(A) (and therefore rank(M) = rank(A) = n). Finally, we can use
Proposition 5.5.9 to get (AB)† = M † = B†A†.

b) Let A = CR be the CR decomposition of A with C ∈ Rm×r and R ∈ Rr×n where
r = rank(A). Observe that C has full column rank and that R has full row rank. Using the
definition of the pseudoinverse, we compute

A†AA† = (CR)†CR(CR)† = R†(C†C)(RR†)C† = R†C† = A†

where we used that R† is a right inverse of R and C† a left inverse of C.

c) Assume first that A has full column rank n = rank(A). In this case, we have A† =
(A⊤A)−1A⊤ by definition of the pseudoinverse for matrices with full column rank. More-
over, notice that A⊤ has full row rank and hence we also get (A⊤)† = A(A⊤A)−1 by
definition of the pseudoinverse for matrices with full row rank. Hence, we get

(A†)⊤ = ((A⊤A)−1A⊤)⊤ = A((A⊤A)−1)⊤ = A((A⊤A)⊤)−1 = A(A⊤A)−1 = (A⊤)†.

We conclude that the statements holds for all matrices with full column rank.

Analogously, we can prove that the statement holds if A has full row rank m = rank(A). In
that case, we have A† = A⊤(AA⊤)−1 and (A⊤)† = (AA⊤)−1A. Hence, we indeed get

(A†)⊤ = (A⊤(AA⊤)−1)⊤ = ((AA⊤)−1)⊤A = ((AA⊤)⊤)−1A = (AA⊤)−1A = (A⊤)†.

We conclude that the statement holds for all matrices with full row rank.

It remains to prove the general case, i.e. we do not assume anymore that A has full row rank
or full column rank. Then by definition, we have A† = R†C† where A = CR is a CR
decomposition of A. In particular, we have C ∈ Rm×r and R ∈ Rr×n where r = rank(A).
Now observe that we also have A⊤ = R⊤C⊤ with R⊤ ∈ Rn×r and C⊤ ∈ Rr×m and of
course, r = rank(A) = rank(A⊤). Hence, we can use Proposition 5.5.9 to get (A⊤)† =
(C⊤)†(R⊤)†. We conclude that

(A⊤)† = (C⊤)†(R⊤)† = (C†)⊤(R†)⊤ = (R†C†)⊤ = (A†)⊤

by using that C has full column rank and R has full row rank and hence (C⊤)† = (C†)⊤ and
(R⊤)† = (R†)⊤.

d) Let A = CR be a CR decomposition of A with C ∈ Rm×r and R ∈ Rr×n where r =
rank(A). We can rewrite

A†A = (CR)†CR = R†C†CR
Prop. 5.5.2

= R†IR = R⊤(RR⊤)−1R

and hence we conclude symmetry of AA† since

(A†A)⊤ = (R⊤(RR⊤)−1R)⊤ = R⊤((RR⊤)−1)⊤R = R⊤((RR⊤)⊤)−1R = R⊤(RR⊤)−1R = A†A.

By Theorem 5.2.6, the matrix R⊤(RR⊤)−1R = A†A is exactly the projection matrix onto
the subspace C(R⊤) = R(R) = R(A) = C(A⊤) (the equality R(R) = R(A) is due to the
observation that R can be obtained from A through row operations and deleting 0-rows, and
by recalling that row operations preserve the row space).
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2. We provide two solutions.

• In this first solution, we solve this by using our knowledge on pseudoinverses. Consider the
function f−1 : C(A) → C(A⊤) given by f−1(x) = A†x for all x ∈ C(A). Observe that
the composition f−1 ◦ f is the identity: we know from Exercise 1 that A†A is the projection
matrix that projects vectors onto the subspace C(A⊤), and hence we have

f−1(f(x)) = A†Ax = x

for all x ∈ C(A⊤). This already implies that f is injective. Observe that with an analogous
argument we get

f(f−1(x)) = AA†x = x

for all x ∈ C(A). Hence, f−1 is injective as well which implies that both f and f−1 are
bijective.
Note that the matrix A†A is in general not the identity matrix. It is crucial that the function
f is only defined on C(A⊤) and not on all of Rn.

• In this second solution, we start by proving injectivity. For this, let x1,x2 ∈ C(A⊤) be
arbitrary and assume that f(x1) = f(x2). We want to argue that this implies x1 = x2.
Observe that we have

0 = f(x1)− f(x2) = A(x1 − x2)

and therefore x1−x2 ∈ N(A). Together with C(A⊤)∩N(A) = {0} and x1−x2 ∈ C(A⊤),
we conclude x1 − x2 = 0 and hence x1 = x2.
It remains to prove surjectivity. Let y ∈ C(A) be arbitrary. By Theorem 5.1.10, we know
that there exists x ∈ C(A⊤) such that {z ∈ Rd : Az = y} = x+N(A) (the theorem applies
because the set is non-empty since y ∈ C(A)). In particular, we have f(x) = Ax = y, as
desired.

3. For every k ∈ {1, . . . , n− 1}, we define Sn−k = {1, . . . , n− k}.

Our strategy is as follows: We first prove inductively that projSn−j
(P ) is a polyhedron for all

1 ≤ j < n. This will then allow us to generalize the proof of Lemma 5.6.4 accordingly.

• For the base case j = 1, observe that projSn−j
(P ) by Theorem 5.6.3.

• Thus, fix now an arbitrary n > j > 1 and assume that projS′
n−j

(P ) is a polyhedron for
j′ = j − 1 (induction hypothesis).

• Under the above assumption, we want to prove that projSn−j
(P ) is a polyhedron. Indeed,

we know that from the induction hypothesis that Q := projS′
n−j

(P ) is a polyhedron. Using
Theorem 5.6.3 on Q, we hence conclude that projSn−j

(P ) is a polyhedron as well.

It remains to prove
projSn−j

(P ) = projSn−j
(projSn−k

(P )).

for all indices 1 ≤ k < j < n. Let j, k be arbitrary such indices. Observe first that the expression
projSn−j

(projSn−k
(P )) is now valid because we proved that projSn−k

(P ) is a polyhedron (and
projections are defined on polyhedra).

Consider first an arbitrary z ∈ projSn−j
(P ). By definition of projSn−j

(P ), there exist xn−j+1, . . . , xn ∈
R such that the vector [

z1 . . . zn−j xn−j+1 . . . xn
]⊤ ∈ Rn

is in P . By definition of projSn−k
(P ), this directly implies that the vector[

z1 . . . zn−j xn−j+1 . . . xn−k

]⊤ ∈ Rn−k
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is in projSn−k
(P ). Using the definition of projSn−j

(projSn−k
(P )), we conclude that z ∈ projSn−j

(projSn−k
(P )).

For the other direction, consider now an arbitrary vector z ∈ projSn−j
(projSn−k

(P )). By definition
of projSn−j

(projSn−k
(P )), there exist xn−j+1, . . . , xn−k ∈ R such that the vector[

z1 . . . zn−j xn−j+1 . . . xn−k

]⊤ ∈ Rn−k

is in projSn−k
(P ). Now using the definition of projSn−k

(P ), there must exist xn−k+1, . . . , xn ∈ R
such that the vector [

z1 . . . zn−j xn−j+1 . . . xn
]⊤ ∈ Rn

is in P . We conclude that z ∈ projSn−j
(P ) by the definition of projSn−j

(P ).

4. In the lecture, it was already proven that, given an arbitrary polyhedron P ⊆ Rn for some n, we
have projSn−i

(P ) ⊆ P (i) for all i ∈ [n] and that P (1) ⊆ projSn−1
(P ). We can use this as base case

and proceed by induction over i.

Fix an arbitrary i > 1 and assume as induction hypothesis that we have P (i−1) = projSn−i+1
(P )

for all polyhedra P ⊆ Rn where n ≥ n− i+ 1.

In the induction step, we want to prove that we also have P (i) = projSn−i
(P ) for all polyhedra P ⊆

Rn with some n ≥ i. Thus, let P be an arbitrary such polyhedron and consider the polyhedron
P ′ = projSn−i+1

(P ) ⊆ Rn−i+1. Applying the base case for P ′ yields projSn−i
(P ′) = P ′(1). Fur-

ther, we know from Lemma 5.6.4 that projSn−i
(P ′) = projSn−i

(projSn−i+1
(P )) = projSn−i

(P ).
It remains to prove P (i) ⊆ P ′(1). Using the induction hypothesis, we indeed observe that P ′(1) =
(P (i−1))(1) = P (i), where the equality (P (i−1))(1) = P (i) follows from Definition 5.6.5.

5. Assume that P1 = {x ∈ R2 : A1x ≤ b1} and P2 = {x ∈ R2 : A2x ≤ b2} for some A1, A2 ∈
Qm×2 and b1,b2 ∈ Qm and natural number m (without loss of generality we can achieve that the
two polyhedra have the same number of constraints by just repeating some constraints). Observe
that the system [

A1

A2

]
x ≤

[
b1

b2

]
has no solution by our assumption P1∩P2 = ∅. Hence, Farkas lemma implies existence of a vector

y ∈ R2m with y ≥ 0, y⊤
[
A1

A2

]
= 0, and y⊤

[
b1

b2

]
< 0. Let y1,y2 ∈ Rm be such that y =

[
y1

y2

]
.

Observe that y⊤
[
A1

A2

]
= 0 can be rewritten as y⊤

1 A1 + y⊤
2 A2 = 0 and hence y⊤

1 A1 = −y⊤
2 A2.

Similarly, we get y⊤
1 b1 < −y⊤

2 b2.

Now define v := y⊤
1 A1 ∈ R2 and w := y⊤

1 b1 ∈ R. We claim that P1 ⊆ {x ∈ R2 : x · v ≤ w}
and P2 ⊆ {x ∈ R2 : x · v > w}. To prove this, let first x ∈ P1 be arbitrary. Then A1x ≤ b1.
Using y1 ≥ 0, we hence get y⊤

1 A1x ≤ y⊤
1 b1 and thus x ∈ {x ∈ R2 : x · v ≤ w}, as desired.

Thus, let now x ∈ P2 be arbitrary. Then A2x ≤ b2. By y2 ≥ 0 we again get y⊤
2 A2x ≤

y⊤
2 b2. Using our previous observations, we can rewrite this as −y⊤

1 A1x ≤ y⊤
2 b2 < −y⊤

1 b1.
Multiplying both sides with −1 yields x ∈ {x ∈ R2 : x · v > w}, as desired. This concludes the
proof.
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