Solution for Assignment 10

- 1. a) Consider the matrix $M \coloneqq AB$. We claim that it has $rank(M) = n$. To see this, observe that rank(B) = n implies $C(B) = \mathbb{R}^n$ because n is also the number of rows of B. Hence, we get $C(M) = C(A)$ (and therefore rank $(M) = rank(A) = n$). Finally, we can use Proposition 5.5.9 to get $(AB)^{\dagger} = M^{\dagger} = B^{\dagger} A^{\dagger}$.
	- **b**) Let $A = CR$ be the CR decomposition of A with $C \in \mathbb{R}^{m \times r}$ and $R \in \mathbb{R}^{r \times n}$ where $r = \text{rank}(A)$. Observe that C has full column rank and that R has full row rank. Using the definition of the pseudoinverse, we compute

$$
A^{\dagger}AA^{\dagger} = (CR)^{\dagger}CR(CR)^{\dagger} = R^{\dagger}(C^{\dagger}C)(RR^{\dagger})C^{\dagger} = R^{\dagger}C^{\dagger} = A^{\dagger}
$$

where we used that R^{\dagger} is a right inverse of R and C^{\dagger} a left inverse of C.

c) Assume first that A has full column rank $n = \text{rank}(A)$. In this case, we have $A^{\dagger} =$ $(A^{\top}A)^{-1}A^{\top}$ by definition of the pseudoinverse for matrices with full column rank. Moreover, notice that A^{\top} has full row rank and hence we also get $(A^{\top})^{\dagger} = A(A^{\top}A)^{-1}$ by definition of the pseudoinverse for matrices with full row rank. Hence, we get

$$
(A^{\dagger})^{\top} = ((A^{\top} A)^{-1} A^{\top})^{\top} = A((A^{\top} A)^{-1})^{\top} = A((A^{\top} A)^{\top})^{-1} = A(A^{\top} A)^{-1} = (A^{\top})^{\dagger}.
$$

We conclude that the statements holds for all matrices with full column rank.

Analogously, we can prove that the statement holds if A has full row rank $m = \text{rank}(A)$. In that case, we have $A^{\dagger} = A^{\top} (A A^{\top})^{-1}$ and $(A^{\top})^{\dagger} = (A A^{\top})^{-1} A$. Hence, we indeed get

$$
(A^{\dagger})^{\top} = (A^{\top} (AA^{\top})^{-1})^{\top} = ((AA^{\top})^{-1})^{\top} A = ((AA^{\top})^{\top})^{-1} A = (AA^{\top})^{-1} A = (A^{\top})^{\dagger}.
$$

We conclude that the statement holds for all matrices with full row rank.

It remains to prove the general case, i.e. we do not assume anymore that A has full row rank or full column rank. Then by definition, we have $A^{\dagger} = R^{\dagger}C^{\dagger}$ where $A = CR$ is a CR decomposition of A. In particular, we have $C \in \mathbb{R}^{m \times r}$ and $R \in \mathbb{R}^{r \times n}$ where $r = \text{rank}(A)$. Now observe that we also have $A^{\top} = R^{\top} C^{\top}$ with $R^{\top} \in \mathbb{R}^{n \times r}$ and $C^{\top} \in \mathbb{R}^{r \times m}$ and of course, $r = \text{rank}(A) = \text{rank}(A^{\top})$. Hence, we can use Proposition 5.5.9 to get $(A^{\top})^{\dagger} =$ $(C^{\top})^{\dagger}$ (R^{\top})[†]. We conclude that

$$
(AT)\dagger = (CT)\dagger (RT)\dagger = (C\dagger)T (R\dagger)T = (R\daggerC\dagger)T = (A\dagger)T
$$

by using that C has full column rank and R has full row rank and hence $(C^{\top})^{\dagger} = (C^{\dagger})^{\top}$ and $(R^{\top})^{\dagger} = (R^{\dagger})^{\top}.$

d) Let $A = CR$ be a CR decomposition of A with $C \in \mathbb{R}^{m \times r}$ and $R \in \mathbb{R}^{r \times n}$ where $r =$ rank (A) . We can rewrite

$$
A^{\dagger} A = (CR)^{\dagger} CR = R^{\dagger} C^{\dagger} CR \stackrel{\text{Prop. 5.5.2}}{=} R^{\dagger} IR = R^{\top} (RR^{\top})^{-1} R
$$

and hence we conclude symmetry of AA^{\dagger} since

$$
(A^{\dagger}A)^{\top} = (R^{\top}(RR^{\top})^{-1}R)^{\top} = R^{\top}((RR^{\top})^{-1})^{\top}R = R^{\top}((RR^{\top})^{\top})^{-1}R = R^{\top}(RR^{\top})^{-1}R = A^{\dagger}A.
$$

By Theorem 5.2.6, the matrix $R^{\top} (RR^{\top})^{-1} R = A^{\dagger} A$ is exactly the projection matrix onto the subspace $\mathbf{C}(R^{\top}) = \mathbf{R}(R) = \mathbf{R}(A) = \mathbf{C}(A^{\top})$ (the equality $\mathbf{R}(R) = \mathbf{R}(A)$ is due to the observation that R can be obtained from A through row operations and deleting 0-rows, and by recalling that row operations preserve the row space).

- 2. We provide two solutions.
	- In this first solution, we solve this by using our knowledge on pseudoinverses. Consider the function $f^{-1}: \mathbf{C}(A) \to \mathbf{C}(A^{\top})$ given by $f^{-1}(\mathbf{x}) = A^{\dagger} \mathbf{x}$ for all $\mathbf{x} \in \mathbf{C}(A)$. Observe that the composition $f^{-1} \circ f$ is the identity: we know from Exercise 1 that $A^{\dagger}A$ is the projection matrix that projects vectors onto the subspace $C(A^{\top})$, and hence we have

$$
f^{-1}(f(\mathbf{x})) = A^{\dagger} A \mathbf{x} = \mathbf{x}
$$

for all $\mathbf{x} \in \mathbf{C}(A^{\top})$. This already implies that f is injective. Observe that with an analogous argument we get

$$
f(f^{-1}(\mathbf{x})) = AA^{\dagger}\mathbf{x} = \mathbf{x}
$$

for all $x \in C(A)$. Hence, f^{-1} is injective as well which implies that both f and f^{-1} are bijective.

Note that the matrix $A^{\dagger}A$ is in general not the identity matrix. It is crucial that the function f is only defined on $\mathbf{C}(A^{\top})$ and not on all of \mathbb{R}^n .

• In this second solution, we start by proving injectivity. For this, let $x_1, x_2 \in \mathbf{C}(A^\top)$ be arbitrary and assume that $f(\mathbf{x}_1) = f(\mathbf{x}_2)$. We want to argue that this implies $\mathbf{x}_1 = \mathbf{x}_2$. Observe that we have

$$
0 = f(\mathbf{x}_1) - f(\mathbf{x}_2) = A(\mathbf{x}_1 - \mathbf{x}_2)
$$

and therefore $\mathbf{x}_1 - \mathbf{x}_2 \in \mathbf{N}(A)$. Together with $\mathbf{C}(A^{\top}) \cap \mathbf{N}(A) = \{0\}$ and $\mathbf{x}_1 - \mathbf{x}_2 \in \mathbf{C}(A^{\top})$, we conclude $x_1 - x_2 = 0$ and hence $x_1 = x_2$.

It remains to prove surjectivity. Let $y \in C(A)$ be arbitrary. By Theorem 5.1.10, we know that there exists $x \in \mathbf{C}(A^{\top})$ such that $\{z \in \mathbb{R}^d : Az = y\} = x + N(A)$ (the theorem applies because the set is non-empty since $y \in C(A)$). In particular, we have $f(x) = Ax = y$, as desired.

3. For every $k \in \{1, ..., n-1\}$, we define $S_{n-k} = \{1, ..., n-k\}$.

Our strategy is as follows: We first prove inductively that $\text{proj}_{S_{n-j}}(P)$ is a polyhedron for all $1 \leq j \leq n$. This will then allow us to generalize the proof of Lemma 5.6.4 accordingly.

- For the base case $j = 1$, observe that $\text{proj}_{S_{n-j}}(P)$ by Theorem 5.6.3.
- Thus, fix now an arbitrary $n > j > 1$ and assume that $\text{proj}_{S_{n-j}'}(P)$ is a polyhedron for $j' = j - 1$ (induction hypothesis).
- Under the above assumption, we want to prove that $\text{proj}_{S_{n-j}}(P)$ is a polyhedron. Indeed, we know that from the induction hypothesis that $Q \coloneqq \text{proj}_{S'_{n-j}}(P)$ is a polyhedron. Using Theorem 5.6.3 on Q, we hence conclude that $\text{proj}_{S_{n-j}}(P)$ is a polyhedron as well.

It remains to prove

$$
\mathsf{proj}_{S_{n-j}}(P) = \mathsf{proj}_{S_{n-j}}(\mathsf{proj}_{S_{n-k}}(P)).
$$

for all indices $1 \leq k < j < n$. Let j, k be arbitrary such indices. Observe first that the expression proj_{S_{n-j} (proj_{S_{n-k}} (P)) is now valid because we proved that proj_{S_{n-k} (P) is a polyhedron (and}} projections are defined on polyhedra).

Consider first an arbitrary $\mathbf{z} \in \text{proj}_{S_{n-j}}(P)$. By definition of $\text{proj}_{S_{n-j}}(P)$, there exist $x_{n-j+1}, \ldots, x_n \in$ R such that the vector

$$
\begin{bmatrix} z_1 & \dots & z_{n-j} & x_{n-j+1} & \dots & x_n \end{bmatrix}^\top \in \mathbb{R}^n
$$

is in P. By definition of $\text{proj}_{S_{n-k}}(P)$, this directly implies that the vector

$$
\begin{bmatrix} z_1 & \dots & z_{n-j} & x_{n-j+1} & \dots & x_{n-k} \end{bmatrix}^\top \in \mathbb{R}^{n-k}
$$

is in proj $_{S_{n-k}}(P)$. Using the definition of proj $_{S_{n-j}}($ proj $_{S_{n-k}}(P)$), we conclude that $\mathbf{z}\in \text{proj}_{S_{n-j}}(\text{proj}_{S_{n-k}}(P))$.

For the other direction, consider now an arbitrary vector $z \in \text{proj}_{S_{n-j}}(\text{proj}_{S_{n-k}}(P))$. By definition of proj S_{n-j} (proj $S_{n-k}(P)$), there exist $x_{n-j+1}, \ldots, x_{n-k} \in \mathbb{R}$ such that the vector

 $\begin{bmatrix} z_1 & \dots & z_{n-j} & x_{n-j+1} & \dots & x_{n-k} \end{bmatrix}^\top \in \mathbb{R}^{n-k}$

is in proj $_{S_{n-k}}(P)$. Now using the definition of proj $_{S_{n-k}}(P)$, there must exist $x_{n-k+1}, \ldots, x_n \in \mathbb{R}$ such that the vector

 $\begin{bmatrix} z_1 & \dots & z_{n-j} & x_{n-j+1} & \dots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$

is in P. We conclude that $\mathbf{z} \in \text{proj}_{S_{n-j}}(P)$ by the definition of $\text{proj}_{S_{n-j}}(P)$.

4. In the lecture, it was already proven that, given an arbitrary polyhedron $P \subseteq \mathbb{R}^n$ for some n, we have proj $_{S_{n-i}}(P) \subseteq P^{(i)}$ for all $i \in [n]$ and that $P^{(1)} \subseteq \text{proj}_{S_{n-1}}(P)$. We can use this as base case and proceed by induction over i.

Fix an arbitrary $i > 1$ and assume as induction hypothesis that we have $P^{(i-1)} = \text{proj}_{S_{n-i+1}}(P)$ for all polyhedra $P \subseteq \mathbb{R}^n$ where $n \geq n - i + 1$.

In the induction step, we want to prove that we also have $P^{(i)} = \mathsf{proj}_{S_{n-i}}(P)$ for all polyhedra $P \subseteq$ \mathbb{R}^n with some $n \geq i$. Thus, let P be an arbitrary such polyhedron and consider the polyhedron $P' = \text{proj}_{S_{n-i+1}}(P) \subseteq \mathbb{R}^{n-i+1}$. Applying the base case for P' yields $\text{proj}_{S_{n-i}}(P') = P'^{(1)}$. Further, we know from Lemma 5.6.4 that $\text{proj}_{S_{n-i}}(P') = \text{proj}_{S_{n-i}}(\text{proj}_{S_{n-i+1}}(P)) = \text{proj}_{S_{n-i}}(P)$. It remains to prove $P^{(i)} \subseteq P^{(1)}$. Using the induction hypothesis, we indeed observe that $P^{(1)} =$ $(P^{(i-1)})(1) = P^{(i)}$, where the equality $(P^{(i-1)})(1) = P^{(i)}$ follows from Definition 5.6.5.

5. Assume that $P_1 = \{ \mathbf{x} \in \mathbb{R}^2 : A_1 \mathbf{x} \leq \mathbf{b}_1 \}$ and $P_2 = \{ \mathbf{x} \in \mathbb{R}^2 : A_2 \mathbf{x} \leq \mathbf{b}_2 \}$ for some $A_1, A_2 \in$ $\mathbb{Q}^{m \times 2}$ and $\mathbf{b}_1, \mathbf{b}_2 \in \mathbb{Q}^m$ and natural number m (without loss of generality we can achieve that the two polyhedra have the same number of constraints by just repeating some constraints). Observe that the system

$$
\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \mathbf{x} \le \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}
$$

has no solution by our assumption $P_1 \cap P_2 = \emptyset$. Hence, Farkas lemma implies existence of a vector $\mathbf{y} \in \mathbb{R}^{2m}$ with $\mathbf{y} \geq \mathbf{0}, \mathbf{y}^\top \begin{bmatrix} A_1 \ A \end{bmatrix}$ A_2 $\Big] = 0$, and \mathbf{y}^{\top} $\Big[\begin{matrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{matrix} \Big]$ $b₂$ $\bigg\} < 0.$ Let $\mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^m$ be such that $\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}$ y_2 . Observe that $\mathbf{y}^{\top} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ A_2 $\Big] = \mathbf{0}$ can be rewritten as $\mathbf{y}_1^\top A_1 + \mathbf{y}_2^\top A_2 = \mathbf{0}$ and hence $\mathbf{y}_1^\top A_1 = -\mathbf{y}_2^\top A_2$. Similarly, we get $\mathbf{y}_1^\top \mathbf{b}_1 < -\mathbf{y}_2^\top \mathbf{b}_2$.

Now define $\mathbf{v} := \mathbf{y}_1^\top A_1 \in \mathbb{R}^2$ and $w := \mathbf{y}_1^\top \mathbf{b}_1 \in \mathbb{R}$. We claim that $P_1 \subseteq {\{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} \cdot \mathbf{v} \leq w\}}$ and $P_2 \subseteq \{ \mathbf{x} \in \mathbb{R}^2 : \mathbf{x} \cdot \mathbf{v} > w \}$. To prove this, let first $\mathbf{x} \in P_1$ be arbitrary. Then $A_1 \mathbf{x} \leq \mathbf{b}_1$. Using $y_1 \ge 0$, we hence get $y_1^\top A_1 x \le y_1^\top b_1$ and thus $x \in \{x \in \mathbb{R}^2 : x \cdot v \le w\}$, as desired. Thus, let now $x \in P_2$ be arbitrary. Then $A_2x \leq b_2$. By $y_2 \geq 0$ we again get $y_2^{\top}A_2x \leq$ $\mathbf{y}_2^{\top} \mathbf{b}_2$. Using our previous observations, we can rewrite this as $-\mathbf{y}_1^{\top} A_1 \mathbf{x} \leq \mathbf{y}_2^{\top} \mathbf{b}_2 < -\mathbf{y}_1^{\top} \mathbf{b}_1$. Multiplying both sides with -1 yields $x \in \{x \in \mathbb{R}^2 : x \cdot v > w\}$, as desired. This concludes the proof.