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Solution for Assignment 11

1. a) Let Cij be the co-factors of A where i, j ∈ [5]. Note that by combining Propositions 6.0.16
and 6.0.9, we get

detA
6.0.9
= detA⊤

6.0.16
=

5∑
j=1

(A⊤)3,j(C
⊤)3,j

=
5∑

i=1

Ai,3Ci,3

= 0C1,3 + 0C2,3 + bC3,3 + 0C4,3 + 0C5,3

= b · (−1)(3+3) ·

∣∣∣∣∣∣∣∣
0 1 4 c
a 5 4 −1
0 −2 1 0
0 −4 3 1

∣∣∣∣∣∣∣∣ .
This is also sometimes called expansion of the determinant along the third column. In par-
ticular, we chose the third column because it contains many zeroes and hence many terms
disappeared. In order to compute ∣∣∣∣∣∣∣∣

0 1 4 c
a 5 4 −1
0 −2 1 0
0 −4 3 1

∣∣∣∣∣∣∣∣
we use the same trick again for the first column. In this way we obtain∣∣∣∣∣∣∣∣

0 1 4 c
a 5 4 −1
0 −2 1 0
0 −4 3 1

∣∣∣∣∣∣∣∣ = a · (−1)(2+1)

∣∣∣∣∣∣
1 4 c
−2 1 0
−4 3 1

∣∣∣∣∣∣ .
We repeat this one more time for the third column of∣∣∣∣∣∣

1 4 c
−2 1 0
−4 3 1

∣∣∣∣∣∣
to get ∣∣∣∣∣∣

1 4 c
−2 1 0
−4 3 1

∣∣∣∣∣∣ = c · (−1)(1+3) ·
∣∣∣∣−2 1
−4 3

∣∣∣∣+ 1 · (−1)(3+3) ·
∣∣∣∣ 1 4
−2 1

∣∣∣∣ .
We can compute these 2× 2 determinants directly with the formula from the lecture as∣∣∣∣−2 1

−4 3

∣∣∣∣ = −2 and
∣∣∣∣ 1 4
−2 1

∣∣∣∣ = 9.

Putting everything together, we obtain

detA = b·(−1)(3+3)
(
a · (−1)(2+1)

(
c · (−1)(1+3) · (−2) + 1 · (−1)(3+3) · 9

))
= ab(2c−9).

We conclude that detA = 0 if and only if a = 0, or b = 0, or c = 9
2 .
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b) As it turns out, we only need to perform one step of Gauss elimination on B to obtain U :

B =

 1 2 −3
2 6 0
−1 −2 2

 →

1 2 −3
0 2 6
0 0 −1

 =: U.

Using Proposition 6.0.8, we see that det(U) = −2. By using Proposition 6.0.22 (and the
discussion in Section 6.0.4), we know that the determinant of U is the same as the determinant
of B (we did not swap any rows). Hence, we conclude det(B) = −2.

2. a) This is a solution for a) that uses the decomposition in the hint. Further below, we provide
an alternative solution that does not use the hint. Observe that, as suggested in the hint, we
can decompose M as

M =

[
A B
0 C

]
=

[
I B
0 C

] [
A 0
0 I

]
where we used identity matrices I and zero matrices 0 of the appropriate dimensions. By
Proposition 6.0.12, we have

det(M) = det(

[
I B
0 C

]
)det(

[
A 0
0 I

]
).

Consider first the matrix M ′ :=

[
I B
0 C

]
. Observe that there is a unique non-zero entry in

each of its first m columns. Thus, every permutation σ that contributes to the determinant of
M ′ in the formula

detM ′ =
∑
σ∈Πn

sign(σ)
n∏

i=1

M ′
i,σ(i)

must select these non-zero entries, i.e. σ(i) = i for all i ∈ [m]. The formula then simplyfies
to

detM ′ =
∑

σ∈Πn−m

sign(σ)
n−m∏
i=1

Ci,σ(i) = detC

as the non-zero entries in the first m columns (or rows) are all one.

Analogously, we get

det

[
A 0
0 I

]
=

∑
σ∈Πm

sign(σ)
m∏
i=1

Ai,σ(i) = detA

and thus we conclude detM = det(A)det(C).

a’) Here is a solution that ignores the decomposition in the hint: We start by using the definition
of the determinant for M , i.e. we have

detM =
∑
σ∈Πn

sign(σ)
n∏

i=1

Mi,σ(i)

where Πn is the set of all permutations on n elements. The key observation for this exercise
is that only those permutations σ ∈ Πn that satisfy σ(1), . . . , σ(m) ∈ {1, . . . ,m} will
contribute to this sum. To see this, let σ ∈ Πn be a permutation with σ(i) > m for some
i ∈ [m]. By the pigeonhole principle, there must exist j ∈ [n] \ [m] with σ(j) ∈ [m]. But by
the shape of M , we must have Mj,σ(j) = 0 and hence the contribution of σ to the sum is 0.

In particular, the relevant (those that contribute non-zero terms to the sum) permutations
σ ∈ Πn satisfy σ(i) ∈ [m] for all i ∈ [m] and σ(j) ∈ [n] \ [m] for all j ∈ [n] \ [m]. In
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other words, restricting such a permutation σ to [m] yields a permutation on m elements,
and restricting σ to [n] \ [m] yields a permutation on n −m elements. Conversely, any two
permutations σ1 ∈ Πm and σ2 ∈ Πn−m yield a permutation σ ∈ Πn that contributes to
the sum (define σ(i) = σ1(i) for i ∈ [m] and σ(j) = m + σ2(j − m) for j ∈ [n] \ [m]).
Observe that the number of inversions in σ is exactly the number of inversions in σ1 plus
the number of inversions in σ2. Hence, we always have sign(σ) = sign(σ1)sign(σ2) in this
correspondence.

We conclude that we can rewrite the sum as

detM =
∑
σ∈Πn

sign(σ)
n∏

i=1

Mi,σ(i) =
∑

σ1∈Πm

∑
σ2∈Πn−m

sign(σ1)sign(σ2)
m∏
i=1

Mi,σ1(i)

n∏
j=m+1

Mj, j+σ2(j−m).

Next, observe that the terms Mi,σ1(i) are always in the A-part of M , i.e. we have Mi,σ1(i) =
Ai,σ1(i). Similarly, the terms Mj, j+σ2(j−m) are always in the C-part of M , i.e. we have
Mj, j+σ2(j−m) = Cj−m,σ2(j−m). Hence, we can further rewrite the sum as

detM =
∑

σ1∈Πm

∑
σ2∈Πn−m

sign(σ1)sign(σ2)
m∏
i=1

Mi,σ1(i)

n∏
j=m+1

Mj, j+σ2(j−m)

=
∑

σ1∈Πm

∑
σ2∈Πn−m

sign(σ1)sign(σ2)
m∏
i=1

Ai,σ1(i)

n∏
j=m+1

Cj−m,σ2(j−m)

=
∑

σ1∈Πm

sign(σ1)
m∏
i=1

Ai,σ1(i)

 ∑
σ2∈Πn−m

sign(σ2)
n∏

j=m+1

Cj−m,σ2(j−m)


=

 ∑
σ1∈Πm

sign(σ1)
m∏
i=1

Ai,σ1(i)

 ∑
σ2∈Πn−m

sign(σ2)
n∏

j=m+1

Cj−m,σ2(j−m)


=

 ∑
σ1∈Πm

sign(σ1)
m∏
i=1

Ai,σ1(i)

 ∑
σ2∈Πn−m

sign(σ2)
n−m∏
j=1

Cj, σ2(j)


= det(A)det(C)

which concludes the proof.

b) In order to calculate the determinant of M using the previous result, we must first bring it
into the right form. Clearly, M already contains a lot of zero entries. In the end, we want to
have a block of zeroes in the bottom left corner. We can use that transposing the matrix does
not change its determinant. Moreover, by Proposition 6.0.21, swapping two rows of a matrix
negates its determinant. Hence we proceed as follows: we first transpose M and then swap
the second row and fourth row, as well as the third and sixth row of the resulting matrix. In
this way, we obtain the matrix

M ′ =



2 9 1 3 2 8
4 0 0 5 5 3
7 4 0 7 2 1
0 0 0 2 3 8
0 0 0 0 0 2
0 0 0 0 1 7

 .

Using the result from the previous subtask and some more row swaps as well as the formula
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for the determinant of triangular matrices, we get

detM = (−1)2detM ′

= detM ′

=

∣∣∣∣∣∣
2 9 1
4 0 0
7 4 0

∣∣∣∣∣∣
∣∣∣∣∣∣
2 3 8
0 0 2
0 1 7

∣∣∣∣∣∣
= (−1)2

∣∣∣∣∣∣
4 0 0
7 4 0
2 9 1

∣∣∣∣∣∣ (−1)

∣∣∣∣∣∣
2 3 8
0 1 7
0 0 2

∣∣∣∣∣∣
= −16 · 4 = −64.

3. a) Using the rules we learned in the lecture, we calculate

u+ v + w = (u+ v) + w = (4 + 2i) + (3− 4i) = (4 + 3) + (2− 4)i = 7− 2i

u · v = (3 + i) · (1 + i) = 3 + 3i+ i− 1 = 2 + 4i

v · w · i = (1 + i) · (3− 4i) · i = (3− 4i+ 3i+ 4) · i = 3i+ 4− 3 + 4i = 1 + 7i

w

v
=

w

v
· v
v
=

(3− 4i)(1− i)

(1 + i)(1− i)
=

3− 3i− 4i− 4

1 + 1
= −1

2
− 7

2
i

v

u
=

v

u
· u
u
=

(1 + i)(3− i)

(3 + i)(3− i)
=

3− i+ 3i+ 1

9 + 1
=

2

5
+

1

5
i

|v| =
√
12 + 12 =

√
2.

4. In this exercise we want to exploit Proposition 6.0.22 which says that the determinant is linear in
each row. In particular, using this on the second row of A and B, we get

det(A)− det(B) = det

 | v⊤
1

|

| u⊤
1

|

M

− det

 | v⊤
1

|

| u⊤
2

|

M

 = det

 | v⊤
1

|

| (u1 − u2)
⊤ |

M

 .

Analogously, we can use it on the second row of C and D to get

det(C)− det(D) = det

 | v⊤
2

|

| u⊤
1

|

M

− det

 | v⊤
2

|

| u⊤
2

|

M

 = det

 | v⊤
2

|

| (u1 − u2)
⊤ |

M

 .

Finally, using linearity in the first row of those two resulting matrices yields

det

 | v⊤
1

|

| (u1 − u2)
⊤ |

M

− det

 | v⊤
2

|

| (u1 − u2)
⊤ |

M

 = det

 | (v1 − v2)
⊤ |

| (u1 − u2)
⊤ |

M


and thus

det(A)− det(B)− det(C) + det(D) = det(E).

5. a) Let λ ∈ R be an arbitrary real eigenvalue of M with corresponding real eigenvector v ∈ Rn,
i.e. we have

Mv = λv.

Now let’s see what happens to v if we apply M + cI instead of M to it:

(M + cI)v = Mv + cv

= λv + cv

= (λ+ c)v.
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As we have observed, v is a real eigenvector of M + cI with corresponding real eigenvalue
c+ λ. This is exactly what we wanted to prove.

b) Consider the matrix

B =



1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11

 .

We observe that A = B + 2I . Hence, our plan is to find two distinct real eigenvalues of B,
and then use the result from the previous subtask.

Since all rows of B are equal, the matrix has rank 1. Thus, 0 is an eigenvalue of B. It remains
to find another real eigenvalue. For this, let us try to guess a real eigenvector of B that does
not correspond to eigenvalue 0. This is not as hard as it may sound: every row of B is the
same, hence any eigenvector of B that does not correspond to eigenvalue 0 should have the
same value in each coordinate. Indeed, we have

B



1
1
1
1
1
1

 = 36



1
1
1
1
1
1

 .

Therefore, the vector 1 =
[
1 1 1 1 1 1

]⊤ is an eigenvector of B with corresponding
eigenvalue 36.

By the result from the previous subtask, it follows that λ1 = 2 and λ2 = 38 are two distinct
real eigenvalues of A.

6. a) Let x denote the vector of x-coordinates x =
[
px,1 . . . px,n

]⊤ and let y denote the vector

of y-coordinates y =
[
py,1 . . . py,n

]⊤. The smoothness property can be rewritten as

pj −
1

2
(pj−1 + pj+1) = 0 ∀ j ∈ {2, . . . , n− 1}

p1 −
1

2
(pn + p2) = 0

pn − 1

2
(pn−1 + p1) = 0

which translates to Ax = 0 and Ay = 0 with

A =



1 −1
2 0 · · · 0 −1

2
−1

2 1 −1
2 · · · 0 0

0
. . . . . . . . . 0 0

...
. . . . . . . . . . . .

...
0 · · · 0 −1

2 1 −1
2

−1
2 0 · · · 0 −1

2 1


.

The matrix A can also be written as

A = I − 1

2
(T + E1,n)−

1

2
(T + E1,n)

⊤

5



where T is the matrix with ones on the first strict upper diagonal (i.e. the entries where the
row coefficient i and column coefficient j satisfy j = i+1 for i ∈ {1, ..., n− 1}) and zeroes
everywhere else, and E1,n has a single non-zero entry in row 1 and column n that is equal to
1.

We also want to satisfy the constraints pjs = cs for all s ∈ [k]. Let xc denote the vector
of x-coordinates of the locations, i.e. xc =

[
cx,1 . . . cx,k

]⊤ and let yc denote the vector

of y-coordinates yc =
[
cy,1 . . . cy,n

]⊤. Then, the location constraints can be written as
Bx = xc and By = yc where the matrix B ∈ Rk×n is given by Bs,r = δr,js for all s ∈ [k]
and r ∈ [n] (recall that the Kronecker-Delta δr,js is one if r = js and zero otherwise). In
other words, an entry Bs,r is one whenever the vertex pr should match location cs according
to the prescribed correspondence C, and Bs,r is zero otherwise.

The final systems of linear equations hence are[
A

B

]
x =

[
0n

xc

]
and

[
A

B

]
y =

[
0n

yc

]

where 0n denotes the n dimensional all-zero vector.

b) Let S =

[
A

B

]
denote the system matrix. Indeed, the system matrix is the same for both linear

systems. Since A ∈ Rn×n and B ∈ Rk×n, the system matrix S is inR(n+k)×n. This implies
that S has rank at most n.

c) We are solving for the curve vertex positions in the least squares sense for the values n = 6,
k = 3, C = {j1 = 1, j2 = 3, j3 = 5} and

c1 =

[
cx,1
cy,1

]
=

[
2
2

]
c2 =

[
cx,2
cy,2

]
=

[
6
2

]
c3 =

[
cx,3
cy,3

]
=

[
4
0

]
.

Our strategy is to first combine the two linear systems in one larger system and then solve
this using the least squares method. Observe that the two systems[

A

B

]
x =

[
0n

xc

]
and

[
A

B

]
y =

[
0n

yc

]

can be rewritten as

M

[
x
y

]
=


A 0n,n
B 0k,n
0n,n A
0k,n B

[
x
y

]
=


0n
xc

0n
yc


where M is a 2(n + k) × 2n matrix block matrix (meaning that we put it together from
smaller matrices) and 0n,n and 0k,n are zero-matrices of corresponding dimensions.

The normal equations hence yield

M⊤M

[
x
y

]
= M⊤


0n
xc

0n
yc

 .
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Plugging in the values of this specific example for A, B, xc, and yc, we get

S =

[
A
B

]
=



1 −1/2 0 0 0 −1/2
−1/2 1 −1/2 0 0 0
0 −1/2 1 −1/2 0 0
0 0 −1/2 1 −1/2 0
0 0 0 −1/2 1 −1/2

−1/2 0 0 0 −1/2 1

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


,

[
0
xc

]
=



0
0
0
0
0
0

2
6
4


,

[
0
yc

]
=



0
0
0
0
0
0

2
2
0


.

The exact final solution is (obtained by solving the normal equations with a computer)

x =
[
76/29 4 156/29 148/29 4 84/29

]⊤ and y =
[
52/29 60/29 52/29 28/29 12/29 28/29

]⊤
.

A drawing of this solution is provided in Figure 1 below.

Figure 1: A drawing of the solution.
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