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Solution for Assignment 13

1. The matrix −S2 is symmetric since

(−S2)⊤ = −(S2)⊤ = −(S⊤)2 = −(−S)2 = −S2

where we used the assumption S⊤ = −S.

From the lecture, we know that a symmetric matrix such as −S2 is positive semidefinite if x⊤(−S2)x ≥
0 for all x ∈ Rn. To verify that this holds here, let x ∈ Rn be arbitrary and observe that

x⊤(−S2)x = x⊤(−S)Sx = x⊤S⊤Sx = ∥Sx ∥2 ≥ 0.

We conclude that −S2 is positive semidefinite.

2. Let v ∈ Rn be an arbitrary non-zero vector. We calculate

v⊤Av =

n∑
i=1

n∑
j=1

vivjAij = n

n∑
i=1

v2i +
∑
i<j

2vivj ≥ n

n∑
i=1

v2i +
∑
i<j

(−v2i − v2j ) =

n∑
i=1

v2i > 0,

where we have used that 0 ≤ (vi + vj)
2 = v2i + 2vivj + v2j for all i, j ∈ [n]. We conclude that A

is indeed positive definite.

3. Consider first the r × n matrix B = ΣrV
⊤
r with rank r. In particular, B has full row rank and

hence
B† = B⊤(BB⊤)−1 = VrΣr(ΣrV

⊤
r VrΣr)

−1 = VrΣr(Σ
2
r )

−1 = VrΣ
−1
r

where we have used Definition 5.5.3, the fact that Σr is a diagonal matrix, and the fact that V ⊤
r Vr =

I .

Similarly, the m× r matrix Ur has full column rank r and hence we get

U †
r = (U⊤

r Ur)
−1U⊤

r = IU⊤
r = U⊤

r

by Definition 5.5.1 and the fact that U⊤
r Ur = I .

Finally, we conclude that
A† = B†U †

r = VrΣ
−1
r U⊤

r

by Proposition 5.5.9.

4. a) The main idea is to plug in the SVD of A. A crucial observation that we will need is that by
orthogonality of U , we have

∥∥U⊤v
∥∥2
2
= (U⊤v)⊤(U⊤v) = v⊤UU⊤v = v⊤v = ∥v ∥22 for

all v ∈ Rm. Equipped with this observation, we calculate

min
x∈Rn

∥Ax− b∥22 = min
x∈Rn

∥UΣV ⊤x− b∥22

= min
x∈Rn

∥U⊤UΣV ⊤x− U⊤b∥22

= min
x∈Rn

∥ΣV ⊤x− U⊤b∥22

= min
y∈Rn

∥Σy − c∥22

where we have substituted y = V ⊤x in the end (which works because V ⊤ is invertible).
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b) Consider the expression ∥Σy − c∥22 and observe that we can write it as

∥Σy − c∥22 =
n∑

i=1

(Σiiyi − ci)
2 =

r∑
i=1

(σiyi − ci)
2 +

n∑
i=r+1

c2i .

We are looking to choose y such that this expression is minimized. Clearly, there is nothing
that we can do about the term

∑n
i=r+1 c

2
i . But by choosing yi = ci/σi for all i ∈ [r], we get∑r

i=1(σiyi − ci)
2 = 0. Hence, this choice of y must be optimal. Concretely, we conclude

that the optimal solution is

y∗ =



c1/σ1

...
cr/σr

0
...
0


= argmin

y∈Rn
∥Σy − c∥22.

c) In subtask a), we substituted y = V ⊤x. Hence, it would make sense to guess that x∗ = V y∗.
Indeed, we can verify that with this choice of x∗ we get

∥Σy∗−c∥22 = ∥ΣV ⊤x∗−c∥22 = ∥UΣV ⊤x∗−UU⊤b∥22 = ∥UΣV ⊤x∗−UU⊤b∥22 = ∥Ax∗−b∥22

and by min
x∈Rn

∥Ax − b∥22 = min
y∈Rn

∥Σy − c∥22 and optimality of y∗ we conclude that x∗ is

optimal, i.e.
x∗ = argmin

x∈Rn
∥Ax∗ − b∥22.

5. a) We prove this by direct calculation

∥x ∥22 =
n∑

i=1

x2i ≤
n∑

i=1

n∑
j=1

|xi||xj | = (
n∑

i=1

|xi|)2 = ∥x ∥21 .

Observe that the inequality
∑n

i=1 x
2
i ≤

∑n
i=1

∑n
j=1 |xi||xj | holds because all terms appear-

ing on the left actually appear on the right as well (but on the right we have some additional
non-negative terms).

b) Without loss of generality, assume that all entries in x are non-negative (if there was a nega-
tive entry, simply switch its sign and observe that both norms remain the same). Next, observe
that ∥x ∥1 =

∑n
i=1 |xi| =

∑n
i=1 xi = 1⊤x where 1 ∈ Rn is the all-ones vector. By Cauchy-

Schwarz, we obtain 1⊤x ≤ ∥1 ∥2 ∥x ∥2. It remains to calculate ∥1 ∥2 = (
∑n

i=1 1)
1
2 =

√
n

to conclude that
∥x ∥1 = 1⊤x ≤ ∥1 ∥2 ∥x ∥2 =

√
n ∥x ∥2 .

6. a) Recall that the trace of a matrix is the sum of its diagonal entries. Consider the matrix A⊤A.
The j-th diagonal entry of A⊤A is exactly the norm of the j-th column of A which is given
by

∑m
i=1A

2
ij . Hence, the trace of A⊤A is given by

Tr(A⊤A) =

n∑
j=1

m∑
i=1

A2
ij =

m∑
i=1

n∑
j=1

A2
ij = ∥A ∥2F .
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b) We know that the squared singular values of A are the eigenvalues of the matrix A⊤A. More-
over, we know that the trace of A⊤A is equal to the sum of its eigenvalues. Hence, we
conclude

Tr(A⊤A) =

min{m,n}∑
i=1

σ2
i

and the result follows by combining this with the previous subtask.

c) By definition, we have
∥A ∥op = max

x∈Rn

∥x ∥2=1

∥Ax ∥2 .

Now observe that we can rewrite the squared version of this as

max
x∈Rn

∥x ∥22=1

∥Ax ∥22 = max
x∈Rn\{0}

∥Ax ∥22
∥x ∥22

= max
x∈Rn\{0}

x⊤A⊤Ax

x⊤x
.

The matrix A⊤A is symmetric and its largest eigenvalue is σ2
1 , hence we get maxx∈Rn\{0}

x⊤A⊤Ax
x⊤x

=
σ2
1 by Proposition 7.3.10. It remains to observe that

argmax
x∈Rn

∥x ∥2=1

∥Ax ∥2 = argmax
x∈Rn

∥x ∥22=1

∥Ax ∥22

and hence

∥A ∥op = max
x∈Rn

∥x ∥2=1

∥Ax ∥2 =
√

max
x∈Rn

∥x ∥22=1

∥Ax ∥22 =
√
σ2
1 = σ1.

d) This follows from b) and c) as

∥A ∥op = σ1 =
√
σ2
1 ≤

√√√√min{m,n}∑
i=1

σ2
i = ∥A ∥F .

e) Using previous subtasks, we obtain

∥A ∥2F =

min{m,n}∑
i=1

σ2
i ≤ min{m,n}σ2

1

and hence
∥A ∥F ≤

√
min{m,n}σ1 =

√
min{m,n} ∥A ∥op .
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