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Solution for Assignment 2

1. The rank of A is 2 as we will prove with the following argument.

Let vi be the i-th column of A, i.e.

vi =

a1i
...

ami


for all i ∈ [m]. Observe first that v1 ̸= 0, so the matrix has at least rank 1. Next, observe that
there is no λ ∈ R with λv1 = v2: Indeed, any such λ would have to satisfy

2λ = λa11 = a12 = 3

by looking at the first coordinates, and

3λ = λa21 = a22 = 4

by looking at the second coordinates. But these two equations contradict each other: The first one
implies λ = 3

2 while the second one implies λ = 4
3 . We conclude that v2 is linearly independent

from v1, and thus A has rank at least 2. If m = 2, we are done. Thus, assume now that m ≥ 3. It
remains to prove that every other column of A is dependent on the first two. For this, note that by
definition of A, we have

vj − vi =


a1j − a1i
a2j − a2i

...
amj − ami

 =


(1 + j)− (1 + i)
(2 + j)− (2 + i)

...
(m+ j)− (m+ i)

 =


j − i
j − i

...
j − i


for all j, i ∈ [m]. Let now i ∈ {3, . . . ,m} be arbitrary. We get

vi − v1 = (i− 1)(v2 − v1)

which implies
vi = (2− i)v1 + (i− 1)v2

and thus proves that vi is dependent. We conclude that the rank of A is exactly 2.

2. a) We can use our decomposition of A. In particular, we want Ax = (vw⊤)x = v(w⊤x)
!
= 0.

In particular, it suffices to find a vector x with w⊤x =
[
w1 w2 w3

]
x = w1x1 + w2x2 +

w3x3 = 0. There are now many possibilities for x. One of them is x1 = w2, x2 = −w1, and
x3 = 0. This is a non-zero vector because we have w1 ̸= 0.

b) Consider the vector w =

w1

w2

w3

. We claim that L is exactly the set of vectors that are

orthogonal to w. In other words, we claim L = {x ∈ R3 : x · w = 0}. Note that
{x ∈ R3 : x ·w = 0} is a hyperplane since w is non-zero.
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In order to prove our claim, let us first consider an arbitrary vector x ∈ {x ∈ R3 : x·w = 0}.
Because we have x ·w = 0, we also get

Ax =

v1v2
v3

 [
w1 w2 w3

]
x =

v1v2
v3

 0 = 0.

Hence, we get x ∈ L.

For the reverse direction, we proceed with an indirect proof: Consider an arbitrary vector
x ∈ R3 that is not orthogonal to w, i.e. x · w = c ̸= 0 for some c ∈ R. Then we have

Ax =

v1v2
v3

 [
w1 w2 w3

]
x =

v1v2
v3

 c =

cv1cv2
cv3

 ̸= 0 since both v1 ̸= 0 and c ̸= 0. In

particular, x is not in L. This concludes the proof.

3. a) We start by computing the powers of A. We get A2 =

0 1 0
0 3 1
1 0 3

 and A3 =

1 0 3
3 1 9
0 3 1

.

Plugging this into the equation, we get

B := A3 + xA2 + yA+ zI =

z + 1 x 3 + y
3 + y 1 + 3x+ z 9 + x+ 3y
x 3 + y 1 + 3x+ z

 !
= 0.

In particular, we want to choose x, y, z such that all entries will become zero. From b12 = x
we can deduce x = 0, from b13 = 3 + y we can deduce y = −3, and from b11 = z + 1 we
get z = −1. In fact, with this choice of x, y, z all entries of B become 0 and hence we found
the unique solution.

b) Note that one could prove this in a very formal way with induction. We opted for a slightly
less but still sufficiently formal proof. Let k ∈ N be arbitrary. If k = 0, then we have
(AB)k = I = I2 = AkBk. Thus, assume now k > 0 and consider the expression

(AB)k = AB ×AB × · · · ×AB︸ ︷︷ ︸
k times

= ABAB · · ·AB︸ ︷︷ ︸
k repetitions of AB

.

Consider now the following algorithm: While there is an appearance of BA in the above
expression, replace it by AB. Note that this operation does not change the product because
matrix multiplication is associative and we are additionally given AB = BA in this exercise.
Moreover, the algorithm must eventually terminate as the number of ways to arrange k A’s
and k B’s in a string is finite and the algorithm will never consider the same arrangement
twice (to see this, note that the sum of indices of the A’s decreases in every step of the
algorithm). Once the algorithm terminates, all A’s must be to the left of the B’s (as otherwise
we could find an appearance of BA). Hence, we have (AB)k = AkBk.

c) According to the previous question, we have (AB)k = AkBk. We compute (AB)k =
AkBk = Ak0 = 0. Therefore, AB is nilpotent with degree at most k.

Remark: The nilpotent degree is not necessarily equal to k. If A is nilpotent of degree 5 and
we choose B = A2, then B is nilpotent of degree 3. But AB = A3 is nilpotent of degree 2.

d) Using distributivity of matrix multiplication, we compute:

(I −A)(I +A+ . . .+Ak−1) = (I +A+ . . .+Ak−1)−A(I +A+ . . .+Ak−1)

= I +A+ . . .+Ak−1 −A−A2 − . . .−Ak

= I −Ak

= I (A is nilpotent of degree k)
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e) As is often the case, there are many ways to prove this. Here, we will argue by induction
over k that the first k columns in T k must be zero for all k ∈ N.

• Property: The k first columns of T k are all zero.
• Base case: For k = 1, the property is true because by our assumptions on T , the first

column of T must be zero.
• Induction step: Fix a natural number 1 ≤ k < m and assume that the property is true

for this k (induction hypothesis). We prove that the property is true for k + 1. In other
words, we prove that the first (k + 1) columns of T k+1 are all zero. For this, we start
by splitting T k+1 into T k+1 = T kT . By our induction hypothesis, the first k columns
of T k are zero. In particular, we have

T k =

 | | | | | |
0 0 · · · 0 v1 v2 · · · vm−k

| | | | | |


for some vectors v1, . . . ,vm−k ∈ Rn. Now recall the column picture

AB =

 | | |
Ab1 Ab2 · · · Abm

| | |


for the product of two m×m matrices A and B where b1,b2, . . . ,bm are the columns
of B. Consider splitting T k+1 as

T k+1 = T kT =

 | | |
T kt1 T kt2 · · · T ktm
| | |


where t1, t2, · · · , tm are the columns of T . We want to argue that the first (k + 1)
columns T kt1, T

kt2, . . . , T
ktk+1 of this matrix are zero. Let i ∈ {1, . . . k + 1}. By

definition of T , only the first i− 1 entries of column ti can be non-zero. Moreover, we
know that T kti is a linear combination of the columns of T k where the coefficients are
the entries of vector ti. We just observed that at most the first i − 1 coefficients in this
linear combination can be non-zero. At the same time, we know that the first k columns
of T k are all zero. Hence, we conclude T kti = 0.

4. a) We take a small detour and first consider an arbitrary vector v that is perpendicular to both
x and y. By definition, this means that we have v · x = 0 and v · y = 0. Now consider the
scalar product v · (λx+ µy). By applying Observation 1.10, we have

v · (λx+ µy) = λv · x+ µv · y = 0.

In other words, any vector v that is perpendicular to both x and y is also perpendicular to
(λx+ µy). Now consider an arbitrary row ui from A. The vector ui must be perpendicular
to both x and y since we have Ax = 0 and Ay = 0. Hence, ui must also be perpendicular
to (λx+ µy).

b) No, L is not a finite set. Take any non-zero vector x ∈ L (which must exist since |L| ≥ 2).
Then every row ui of A must be perpendicular to x. Hence, ui must also be perpendicular
to λx for any choice of λ ∈ R by subtask a). In other words, λx is perpendicular to all rows
of A. This implies that A(λx) = 0 and hence λx ∈ L. For every choice of λ we obtain
a different vector in L. The number of choices of λ is infinite/unbounded, hence L is not a
finite set.
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5. a) In order to determine the rank of A, we have to find out how many of its columns are linearly
independent. Let us denote the columns of A by v1,v2,v3, i.e.

A =

 | | |
v1 v2 v3

| | |

 .

By checking the column vectors in order we quickly see that v2 can be obtained from v1 as
v2 = −3v1. But if we try to obtain v3 from v1 we fail, since there is no λ ∈ R such that both
1λ = 3 and −2λ = 0. In other words, the set of vectors {v1,v3} is linearly independent.
We found a set of two vectors that is linearly independent and also observed that the set of
all three vectors is not linearly independent. Therefore, the rank of A is 2.

b) We proceed as in subtask a) and check linear independence of the columns of A. Let us again
denote the columns of A by v1,v2,v3, i.e.

A =

 | | |
v1 v2 v3

| | |

 .

We choose to check the columns in reverse order v3,v2,v1. In particular, we first check
whether v2 is independent from v3. Indeed, there is no way of obtaining the 1 in the first
coordinate of v2 if we only use v3, hence v2 is linearly independent from v3. It remains to
check whether v1 can be obtained as linear combination of v2 and v3. Here we observe that
there is no way of obtaining the 2 in the second coordinate of v1 since the second entry of
both v2 and v3 is 0. We conclude that the three vectors are linearly independent and hence
A has rank 3.

6. a) There are many possible solutions here. For example, we could choose

A =

[
1 1
0 1

]
, B =

[
1 0
1 1

]
with

(AB)⊤ =

[
2 1
1 1

]⊤
=

[
2 1
1 1

]
and

A⊤B⊤ =

[
1 0
1 1

] [
1 1
0 1

]
=

[
1 1
1 2

]
.

b) Yes, it is possible to find examples where both A and B are symmetric. For example, consider
the matrices

A =

[
1 1
1 1

]
, B =

[
2 0
0 0

]
.

We have

(AB)⊤ = B⊤A⊤ = BA =

[
2 0
0 0

] [
1 1
1 1

]
=

[
2 2
0 0

]
but also

A⊤B⊤ = AB =

[
1 1
1 1

] [
2 0
0 0

]
=

[
2 0
2 0

]
.

Note that any two symmetric 2 × 2 matrices that do not commute (i.e. AB ̸= BA) work as
an example here.

Multiple choice Let A be an m1 × n1 matrix and let B be an m2 × n2 matrix for natural
numbers m1, n1,m2, n2. For each statement, determine whether it is true or not (regardless of
what values m1, n1,m2, n2 take).
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1. If A2 is defined, then A must be square.

√
(a) Yes

(b) No

Explanation: For matrix multiplication to work, the number of columns of the first matrix has to
equal the number of rows of the second matrix. In this case, both the first and second matrix are A
which implies that A must be square.

2. If A2 = I , then A = I .

(a) Yes

√
(b) No

Explanation: A possible counterexample is A =

[
0 1
1 0

]
.

3. If A3 = 0, then A = 0.

(a) Yes

√
(b) No

Explanation: A possible counterexample is A =

[
0 1
0 0

]
.

4. If A =

[
1 a
0 1

]
, then An =

[
1 na
0 1

]
for all n ∈ N.

√
(a) Yes

(b) No

Explanation: A full proof could be obtained via induction. We will provide an intuitive explana-
tion. Consider a 2× 2 matrix B and consider what happens when we multiply A with B. The first
row of AB will be the first row of B, plus a times the second row of B. The second row of AB
will be copied from the second row of B. Now if the second row of B is

[
0 1

]
, this means that

left-multiplying with A corresponds to adding a to the entry in the first row and second column.

5. If AB = B for some choice of B, then A = I .

(a) Yes

√
(b) No

Explanation: If B = 0 and A ̸= I , we still have AB = B.
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6. If both products AB and BA are defined, then A and B must be square.

(a) Yes

√
(b) No

Explanation: A could be a 3× 2 matrix while B is a 2× 3 matrix.

7. If both products AB and BA are defined, then AB and BA must be square.

√
(a) Yes

(b) No

Explanation: If both products are defined, we must have n1 = m2 and n2 = m1. Observe that
AB is an m1 × n2 matrix while BA is an m2 × n1 matrix. Hence, both must be square.

8. If two columns of A are equal and AB is defined, the corresponding columns of AB must also
be equal.

(a) Yes

√
(b) No

Explanation: A counterexample would be A =

[
1 1
0 0

]
and B =

[
1 0
1 0

]
.

9. If two columns of B are equal and AB is defined, the corresponding columns of AB must also
be equal.

√
(a) Yes

(b) No

Explanation: This can be seen from the column picture of matrix multiplication (Figure 1.9 in
lecture notes).

10. If two rows of A are equal and AB is defined, the corresponding rows of AB must also be
equal.

√
(a) Yes

(b) No

Explanation: This can be seen from the row picture of matrix multiplication (Figure 1.8 in lecture
notes).
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11. If two rows of B are equal and AB is defined, the corresponding rows of AB must also be
equal.

(a) Yes

√
(b) No

Explanation: A counterexample would be A =

[
1 1
0 0

]
and B =

[
1 0
1 0

]
.

12. If A and B are symmetric matrices and AB is defined, AB is also symmetric.

(a) Yes

√
(b) No

Explanation: A counterexample would be A =

[
1 0
0 0

]
and B =

[
0 1
1 0

]
.
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