Solution for Assignment 3

 a) By definition, T is a linear transformation if and only if T(x + y) = T(x) + T(y) and T(λx) = λT(x) holds for all x, y ∈ ℝⁿ and λ ∈ ℝ. Hence, we need to verify this. Let x, y ∈ ℝⁿ and λ ∈ ℝ be arbitrary. Indeed, we have

$$T(\mathbf{x} + \mathbf{y}) = \sum_{k=1}^{n} k(x_k + y_k) = \sum_{k=1}^{n} (kx_k + ky_k) = \sum_{k=1}^{n} kx_k + \sum_{k=1}^{n} ky_k = T(\mathbf{x}) + T(\mathbf{y})$$

and

$$T(\lambda \mathbf{x}) = \sum_{k=1}^{n} k(\lambda x_k) = \lambda \sum_{k=1}^{n} k x_k = \lambda T(\mathbf{x})$$

which proves that T is a linear transformation.

b) No, T is not a linear transformation. Consider the standard unit vector $\mathbf{e}_n \in \mathbb{R}^n$ and choose $\lambda = 2$. By definition of T, we get

$$T(\lambda \mathbf{e}_n) = \sum_{k=1}^{n-1} \lambda^k 0 + \lambda^n = \lambda^n$$

and also

$$T(\mathbf{e}_n) = \sum_{k=1}^{n-1} 0 + 1 = 1.$$

Hence, we have $T(\lambda \mathbf{e}_n) = \lambda^n = 2^n \neq 2 = \lambda T(\mathbf{e}_n)$ which means that T is not a linear transformation. Note that the assumption $n \geq 2$ is crucial for this last step to work.

- 2. We argue both directions separately.
 - (\Rightarrow) Assume that T is linear, and observe that, by definition of T, we have

$$T(\mathbf{0}) = \begin{bmatrix} | & | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n & \mathbf{v}_{n+1} \\ | & | & | & | & | \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} = \mathbf{v}_{n+1}.$$

By Lemma 2.28 we also have $T(\mathbf{0}) = \mathbf{0}$ which implies $\mathbf{v}_{n+1} = T(\mathbf{0}) = \mathbf{0}$, as desired. (\Leftarrow) Assume now that $\mathbf{v}_{n+1} = \mathbf{0}$. Observe that we have

$$T(\mathbf{x}) = \begin{bmatrix} | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n & \mathbf{v}_{n+1} \\ | & | & | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ 1 \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \\ | & | & | & | \end{bmatrix} \mathbf{x} + \mathbf{v}_{n+1}$$

for all $\mathbf{x} \in \mathbb{R}^n$. Since $\mathbf{v}_{n+1} = \mathbf{0}$, this means that $T(\mathbf{x}) = B\mathbf{x}$ with

$$B = \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \\ | & | & | \end{bmatrix}$$

for all $\mathbf{x} \in \mathbb{R}^n$. From Observation 2.26, we conclude T is a linear transformation.

3. a) We have to find some angle $\phi \in \mathbb{R}$ such that $A = Q(\phi)$. Since $\cos(\phi)$ should be zero, we have two candidates $\phi = \frac{1}{2}\pi$ and $\phi = \frac{3}{2}\pi$ if we restrict ourselves to $\phi \in [0, 2\pi)$. But we also need $\sin(\phi) = 1$ which is only true for $\phi = \frac{1}{2}\pi$. Indeed, for $\phi = \frac{1}{2}\pi$ we have

$$Q(\phi) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = A.$$

b) We use the definition of the matrix product and the following addition theorems of the trigonometric functions

$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

to get

$$Q(\phi_1) \cdot Q(\phi_2) = \begin{bmatrix} \cos \phi_1 & -\sin \phi_1 \\ \sin \phi_1 & \cos \phi_1 \end{bmatrix} \begin{bmatrix} \cos \phi_2 & -\sin \phi_2 \\ \sin \phi_2 & \cos \phi_2 \end{bmatrix}$$
$$= \begin{bmatrix} \cos \phi_1 \cos \phi_2 - \sin \phi_1 \sin \phi_2 & -\cos \phi_1 \sin \phi_2 - \sin \phi_1 \cos \phi_2 \\ \cos \phi_1 \sin \phi_2 + \sin \phi_1 \cos \phi_2 & \cos \phi_1 \cos \phi_2 - \sin \phi_1 \sin \phi_2 \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\phi_1 + \phi_2) & -\sin(\phi_1 + \phi_2) \\ \sin(\phi_1 + \phi_2) & \cos(\phi_1 + \phi_2) \end{bmatrix}.$$

So the matrix product $Q(\phi_1)Q(\phi_2)$ is a rotation matrix $Q(\phi_1 + \phi_2)$ with the rotation angle $\phi_3 = \phi_1 + \phi_2$.

c) Since A is a rotation matrix, there exists $\phi \in \mathbb{R}$ with $A = Q(\phi)$. Choose B as the rotation matrix $B = Q(-\phi)$. By part b), we have

$$AB = Q(\phi)Q(-\phi) = Q(\phi-\phi) = Q(0) = I = Q(0) = Q(-\phi+\phi) = Q(-\phi)Q(\phi) = BA.$$

4. a) Let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be the rows of A and let $\mathbf{b}_1, \ldots, \mathbf{b}_m$ be the columns of B. By the definition of matrix multiplication, we have

$$AB = \begin{bmatrix} -\mathbf{a}_1 & -\mathbf{a}_2 & -\mathbf{a}_2$$

Notice that by the triangular shape of A, the last m - i entries of \mathbf{a}_i are zero for all $i \in [m]$. Similarly, the first i - 1 entries of \mathbf{b}_i are zero for all $i \in [m]$. In particular, for all $i, j \in [m]$ with i < j, we get $\mathbf{a}_i \cdot \mathbf{b}_j = 0$. Hence, AB is indeed lower triangular.

- **b)** Let A and B be $m \times m$ upper triangular matrices. Then A^{\top} and B^{\top} are lower triangular. By subtask a), this implies that $B^{\top}A^{\top}$ is lower triangular and we know $B^{\top}A^{\top} = (AB)^{\top}$. Hence, AB is upper triangular.
- **5. a)** Recall that the 2×2 matrix

$$A' = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

is a rotation matrix. In particular, it rotates vectors in \mathbb{R}^2 by $\frac{\pi}{4}$ in counter-clockwise direction. Observe that the matrix A contains A' as a submatrix, i.e. we can obtain A' by removing the second column and second row from A.

Now consider an arbitrary vector $\mathbf{v} \in \mathbb{R}^3$ that is spanned by \mathbf{e}_1 and \mathbf{e}_3 , i.e. $\mathbf{v} = v_1\mathbf{e}_1 + v_3\mathbf{e}_3$. Then applying A to \mathbf{v} has no effect on the second coordinate, but it will rotate that \mathbf{v} in the plane spanned by \mathbf{e}_1 and \mathbf{e}_3 . A better way to say this, is that applying A to \mathbf{v} corresponds to a rotation around the axis \mathbf{e}_2 (the vecor orthogonal to the plane spanned by \mathbf{e}_1 and \mathbf{e}_3).

Finally, observe that this is still true even if we don't have $v_2 = 0$. Since the second column of A is simply e_2 , the second coordinate of v remains unchanged when applying A to it.

In conclusion, the linear transformation given by matrix A is a rotation by $\frac{\pi}{4}$ around the axis spanned by \mathbf{e}_2 .

b) Note that we did not specify a direction for the rotation in the exercise. The exercise is still well defined because we want to rotate by π and hence the direction does not matter.

We start by thinking about what such a transformation would do to the standard unit vectors e_1, e_2, e_3 . The vector e_1 should be mapped to e_2 , the vector e_2 should be mapped to e_1 , and the vector e_3 should be mapped to $-e_3$. In particular, we want

$$A\begin{bmatrix} | & | & | \\ \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\ | & | & | \end{bmatrix} \stackrel{!}{=} \begin{bmatrix} | & | & | \\ \mathbf{e}_{2} & \mathbf{e}_{1} & -\mathbf{e}_{3} \\ | & | & | \end{bmatrix}.$$

From this, we conclude that A has to be the matrix

$$A = \begin{bmatrix} | & | & | \\ \mathbf{e}_2 & \mathbf{e}_1 & -\mathbf{e}_3 \\ | & | & | \end{bmatrix}.$$

6. a) Observe first that

$$T\begin{pmatrix} 0\\1 \end{pmatrix} = T\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{bmatrix} 2\\3\\2 \end{bmatrix} = \begin{bmatrix} 1\\1\\2 \end{bmatrix} = \begin{bmatrix} 1\\2\\0 \end{bmatrix}$$

by linearity of T. Therefore, we get

$$T\begin{pmatrix} x\\ y \end{bmatrix} = T(x \begin{bmatrix} 1\\ 0 \end{bmatrix} + y \begin{bmatrix} 0\\ 1 \end{bmatrix}) = x \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix} + y \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix} = \begin{bmatrix} x+y\\ x+2y\\ 2x \end{bmatrix}$$

for all $x, y \in \mathbb{R}$.

b) Recall from subtask a) that we have

$$T\begin{pmatrix} x\\ y \end{bmatrix} = x \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix} + y \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}$$

for all $x, y \in \mathbb{R}$. We can write this as a matrix-vector product

$$T\begin{pmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 1 & 2\\ 2 & 0 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$

and thus conclude that $T = T_A$ where

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 0 \end{bmatrix}.$$

7. We define $T(\mathbf{x}) \coloneqq \mathbf{v}\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}$. By Observation 2.26, T is indeed a linear transformation. It remains to observe that we have

$$L = \{\lambda \mathbf{v} : \lambda \in \mathbb{R}\} = \{\mathbf{v}\lambda : \lambda \in \mathbb{R}\} = \{\mathbf{v}\mathbf{x} : \mathbf{x} \in \mathbb{R}\} = \{T(\mathbf{x}) : \mathbf{x} \in \mathbb{R}\}.$$

Note that most of this is just symbolic manipulation, i.e. by replacing $\lambda \in \mathbb{R}$ with $\mathbf{x} \in \mathbb{R}$ we just change the name of a variable, nothing interesting happens. Also note that we write \mathbf{x} in bold to emphasize that we think of it as a vector in $\mathbb{R}^1 = \mathbb{R}$, while we think of $\lambda \in \mathbb{R}$ as a scalar (there is no mathematical difference between these two things, the different 'names' just try to hint at how we use the objects).