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Solution for Assignment 3

1. a) By definition, T is a linear transformation if and only if T (x + y) = T (x) + T (y) and
T (λx) = λT (x) holds for all x,y ∈ Rn and λ ∈ R. Hence, we need to verify this. Let
x,y ∈ Rn and λ ∈ R be arbitrary. Indeed, we have

T (x+ y) =
n∑

k=1

k(xk + yk) =
n∑

k=1

(kxk + kyk) =
n∑

k=1

kxk +
n∑

k=1

kyk = T (x) + T (y)

and

T (λx) =
n∑

k=1

k(λxk) = λ
n∑

k=1

kxk = λT (x)

which proves that T is a linear transformation.

b) No, T is not a linear transformation. Consider the standard unit vector en ∈ Rn and choose
λ = 2. By definition of T , we get

T (λen) =

n−1∑
k=1

λk0 + λn = λn

and also

T (en) =
n−1∑
k=1

0 + 1 = 1.

Hence, we have T (λen) = λn = 2n ̸= 2 = λT (en) which means that T is not a linear
transformation. Note that the assumption n ≥ 2 is crucial for this last step to work.

2. We argue both directions separately.

(⇒) Assume that T is linear, and observe that, by definition of T , we have

T (0) =

 | | | |
v1 v2 . . . vn vn+1

| | | |



0
0
...
0
1

 = vn+1.

By Lemma 2.28 we also have T (0) = 0 which implies vn+1 = T (0) = 0, as desired.
(⇐) Assume now that vn+1 = 0. Observe that we have

T (x) =

 | | | |
v1 v2 . . . vn vn+1

| | | |



x1
x2
...
xn
1

 =

 | | |
v1 v2 . . . vn

| | |

x+ vn+1

for all x ∈ Rn. Since vn+1 = 0, this means that T (x) = Bx with

B =

 | | |
v1 v2 . . . vn

| | |


for all x ∈ Rn. From Observation 2.26, we conclude T is a linear transformation.
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3. a) We have to find some angle ϕ ∈ R such that A = Q(ϕ). Since cos(ϕ) should be zero, we
have two candidates ϕ = 1

2π and ϕ = 3
2π if we restrict ourselves to ϕ ∈ [0, 2π). But we also

need sin(ϕ) = 1 which is only true for ϕ = 1
2π. Indeed, for ϕ = 1

2π we have

Q(ϕ) =

[
0 −1
1 0

]
= A.

b) We use the definition of the matrix product and the following addition theorems of the
trigonometric functions

sin (α+ β) = sinα cosβ + cosα sinβ

cos (α+ β) = cosα cosβ − sinα sinβ

to get

Q(ϕ1) ·Q(ϕ2) =

[
cosϕ1 − sinϕ1

sinϕ1 cosϕ1

] [
cosϕ2 − sinϕ2

sinϕ2 cosϕ2

]
=

[
cosϕ1 cosϕ2 − sinϕ1 sinϕ2 − cosϕ1 sinϕ2 − sinϕ1 cosϕ2

cosϕ1 sinϕ2 + sinϕ1 cosϕ2 cosϕ1 cosϕ2 − sinϕ1 sinϕ2

]
=

[
cos(ϕ1 + ϕ2) − sin(ϕ1 + ϕ2)
sin(ϕ1 + ϕ2) cos(ϕ1 + ϕ2)

]
.

So the matrix product Q(ϕ1)Q(ϕ2) is a rotation matrix Q(ϕ1 + ϕ2) with the rotation angle
ϕ3 = ϕ1 + ϕ2.

c) Since A is a rotation matrix, there exists ϕ ∈ R with A = Q(ϕ). Choose B as the rotation
matrix B = Q(−ϕ). By part b), we have

AB = Q(ϕ)Q(−ϕ) = Q(ϕ−ϕ) = Q(0) = I = Q(0) = Q(−ϕ+ϕ) = Q(−ϕ)Q(ϕ) = BA.

4. a) Let a1, . . . ,am be the rows of A and let b1, . . .bm be the columns of B. By the definition
of matrix multiplication, we have

AB =



| a1 |

| a2 |

...
...

...

| am |


 | | . . . |
b1 b2 . . . bm

| | . . . |

 =


a1 · b1 a1 · b2 . . . a1 · bm

a2 · b1 a2 · b2 . . . a2 · bm
...

...
. . .

...
am · b1 am · b2 . . . am · bm

 .

Notice that by the triangular shape of A, the last m− i entries of ai are zero for all i ∈ [m].
Similarly, the first i− 1 entries of bi are zero for all i ∈ [m]. In particular, for all i, j ∈ [m]
with i < j, we get ai · bj = 0. Hence, AB is indeed lower triangular.

b) Let A and B be m × m upper triangular matrices. Then A⊤ and B⊤ are lower triangular.
By subtask a), this implies that B⊤A⊤ is lower triangular and we know B⊤A⊤ = (AB)⊤.
Hence, AB is upper triangular.

5. a) Recall that the 2× 2 matrix

A′ =

[
1√
2

− 1√
2

1√
2

1√
2

]
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is a rotation matrix. In particular, it rotates vectors inR2 by π
4 in counter-clockwise direction.

Observe that the matrix A contains A′ as a submatrix, i.e. we can obtain A′ by removing the
second column and second row from A.

Now consider an arbitrary vector v ∈ R3 that is spanned by e1 and e3, i.e. v = v1e1+ v3e3.
Then applying A to v has no effect on the second coordinate, but it will rotate that v in the
plane spanned by e1 and e3. A better way to say this, is that applying A to v corresponds to
a rotation around the axis e2 (the vecor orthogonal to the plane spanned by e1 and e3).

Finally, observe that this is still true even if we don’t have v2 = 0. Since the second column
of A is simply e2, the second coordinate of v remains unchanged when applying A to it.

In conclusion, the linear transformation given by matrix A is a rotation by π
4 around the axis

spanned by e2.

b) Note that we did not specify a direction for the rotation in the exercise. The exercise is still
well defined because we want to rotate by π and hence the direction does not matter.

We start by thinking about what such a transformation would do to the standard unit vectors
e1, e2, e3. The vector e1 should be mapped to e2, the vector e2 should be mapped to e1, and
the vector e3 should be mapped to −e3. In particular, we want

A

 | | |
e1 e2 e3
| | |

 !
=

 | | |
e2 e1 −e3
| | |

 .

From this, we conclude that A has to be the matrix

A =

 | | |
e2 e1 −e3
| | |

 .

6. a) Observe first that

T (

[
0
1

]
) = T (

[
1
1

]
−
[
1
0

]
) =

23
2

−

11
2

 =

12
0


by linearity of T . Therefore, we get

T (

[
x
y

]
) = T (x

[
1
0

]
+ y

[
0
1

]
) = x

11
2

+ y

12
0

 =

 x+ y
x+ 2y
2x


for all x, y ∈ R.

b) Recall from subtask a) that we have

T (

[
x
y

]
) = x

11
2

+ y

12
0


for all x, y ∈ R. We can write this as a matrix-vector product

T (

[
x
y

]
) =

1 1
1 2
2 0

[
x
y

]
and thus conclude that T = TA where

A =

1 1
1 2
2 0

 .
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7. We define T (x) := vx for all x ∈ R. By Observation 2.26, T is indeed a linear transformation. It
remains to observe that we have

L = {λv : λ ∈ R} = {vλ : λ ∈ R} = {vx : x ∈ R} = {T (x) : x ∈ R}.

Note that most of this is just symbolic manipulation, i.e. by replacing λ ∈ R with x ∈ R we just
change the name of a variable, nothing interesting happens. Also note that we write x in bold to
emphasize that we think of it as a vector in R1 = R, while we think of λ ∈ R as a scalar (there is
no mathematical difference between these two things, the different ‘names’ just try to hint at how
we use the objects).
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