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Solution for Assignment 5

1. a) We will use the elimination procedure on A in order to get the upper triangular matrix U and
the lower triangular matrix L. First, we multiply A with

1 00
En=|-% 10
L 0 1_
and ) )
1 00
F3 = 10
-1 0 1)
to get
2 —12 6
E31E21A = |0 2 —2
0o 1 —11
We also note down the coefficients {97 = % and /31 = 1 for L. Note that these are
just the negated entries of E; and E3, respectively. Next, we multiply this with E3y =
1 0 0
0 1 0] and get
1
0 —5 1
2 —12 6
E32E31E21A = |0 2 —2 =U
0O 0 -10

which is upper triangular. We also write down {32 = % From the lecture we know that we
can obtain L as

1 0 0 1 0 0
L=\l 1 0[=]|3 10
l31 l3 1 1 31
Indeed, checking
2 -12 6 2 -12 6

LU =

= = O
—_
|
W
—_
Il
A

0
0of |10 2 -2 | =
1] (0 0 =10 2 —-11 -5

=Nl =

we conclude that this is a valid LU factorization of A.

b) Since L is lower triangular, we can start substituting from the top. In particular, writing out
the equation gives

10 0] [sa] |, [4
Lyz%lO ol = |4 | =h.
1 4 1] |y 25

Hence,we gety; =4,y =4—2=2,andy3 =25 — 1 — 4 = 20.
¢) We first write down the system again as

2 —-12 6 x1 4
Ux= 1|0 2 —2 To|l = 2| =y.
0 0 -10] |x3 20



By using back substitution we obtain x3 = _2—?0 = 2,10 = %5 = —l,and 1y =

4-12+412 __
2412 _ 9,

d) Using the results from the previous two subtasks we get

Ax Y ux=LUx) L Ly Zb.

2. We perform Gauss-Jordan elimination on

3.

1 2 0 3
A=12 4 1 4
3 6 2 5
Our first pivot is already 1, so we can eliminate in the first column to get

1 2 0 3

0 0 1 -2

002 -4
The second column is already done so we move on to eliminate in the third column. Luckily, our
pivot is already 1 again so we do not have to normalize. We obtain

120 3
0 01 -2
000 O

and observe that we are done since this matrix is in row echolon form. In other words, this is our
Ry and we can check that it corresponds exactly to R on the first two rows.

1 0 0 O
a) The inverse of A is A1 = _01 _1 1 (1] 8 . To justify this, it suffices to check that
0 0 -1 1

AA~" indeed equals I. But let us still explain how we found A~': Finding A~! can be done
by finding vectors vi, va, V3, v4 € R* (columns of A1) such that

AVZ' = €;

for all i € {1,2,3,4}, where e; is the i-th standard unit vector. Using e.g. elimination to
solve these systems, we get

1 0 0 0
-1 |1 10 0
V1= 0l V2 = _1]> V3 = 11> V4 = 0
0 0 -1 1
1 0 0 O
1 o -1 1 0 0 . .
andthus A= = |vy vy Vv3 vy 0 -1 1 ol Alternatively, one might also
0 0 -1 1
be able to guess the vectors v, ..., v4 by noticing that by subtracting the (i + 1)-th column

of A from the i-th column of A, we get e;, forall i € {1,2,3} (and that v4 = ey).



b) We solve this exercise by guessing that the pattern from a) also works in general. Concretely,
we define the matrix B € R™*™ with columns vy, ..., v,, € R™ such that v; := e; — €;41
foralli € {1,2,...,m — 1} and v,,, := e,,. We claim that B is the unique inverse of A.
To prove this, first observe that the i-th row of A is given by 22:1 eg. This means that the
entry (AB);; is given by

(AB)ij = (D _ep)vi=> elv;
k=1 k=1

forall 4,5 € [m]. Let now i, j € [m] be arbitrary. We distinguish three cases.

* Assume first j < 4. Then we get > \_ e v, = Y_ e} (e — eji1) = e;—ej -
T
* Next, assume j > ¢. Observe that in this case, we have e;vj = 0 for all k£ € [i] and thus
(AB);; = 0.

* Finally, we observe that 22:1 e,;rvj = ejTej =1fori=j.

We conclude that AB = I and thus B is the unique inverse of A.

4. We solve both subtasks at once using the C' R-decomposition. Consider the matrix

u; Uz Uus b

obtained by using u;, ug, us, b as columns. Concretely, we have

2 -1 2 1

[ I 4 5 _5 _9
wowouy b= o o

N P

We compute the C' R-decomposition of this matrix. After dividing the first row by 2 and eliminating
the first column, we get

1 1
1 -3 13
0 3 -1 0
0 9 -3 2
0 3 -1 1

Next, we divide the second row by 3 and eliminate in the second column to get

O O wlo| ot

1
2
0
2
1

o O O =
O O = O

Finally, we divide the third row by 2 and eliminate in the fourth column to obtain

o O O =
O O = O
O O Wit
O = O O

We conclude that our matrix has C' R-decomposition

N

u; uz uz b [ =|uy u bf |0
[ . 1 ][O



Interpreting this result, we deduce that b cannot be written as a linear combination of up, us, us
since we have a pivot in the fourth column. Moreover, the reduced row echolon form also shows
that ug is dependent on u; and us. Hence, the three vectors uy, us, us are linearly dependent.

. Each of the four points yields one linear equation with variables a, b, ¢, d. For example, for x =
4,y = 5 we get the equation
a4® +b4* + c4 +d = 5.

In total, we get the linear system
a0® +b0* +c0+d=1
a2’ +b2° + 2+ d =2
ad® +04% +cd+d=5
a6® + b6% + c6 + d =6

with four equations and four variables that we can write in matrix form as

10 0 077[d 1
12 4 8| le| |2
1 4 16 64| |b] |5
1 6 36 216] |a 6

We now want to solve this system by using the elimination technique. For this, it is convenient to
apply the row operations to the system matrix and the right-hand side simultaneously by appending
the right-hand side to the matrix as follows:

10 0 0|1
1 2 4 812
1 4 16 645
1 6 36 216|6
After performing elimination in the first column we get
1 0 0 0117
0 2 4 811
0 4 16 644
0 6 36 216 |5

Next, we perform elimination in the second columns to get

1 0 0 01

0 2 4 811

0 0 8 48]|2

| 0 0 24 192 |2 |

Finally, we obtain

100 0] 1

0 2 4 8| 1

0 0 8 48| 2

0 0 0 48| -4
It remains to perform backward substitution. From the last row, we get a = — 44—8 = — % Next, we

2

getb = 2_7;8“ = g = %. From the second row we obtain ¢ = 1=82=4b — Itg=3 _ —%. Finally,
we get d = 1 from the first row. Hence, the function f(z) = —%x?’ + %af — %x + 1 interpolates

all of our datapoints.



6. We want to prove that w1, wy, wg are linearly independent. Consider the matrices

. o 1

W= |w; wo w3|,Vi=|v: vy v3|,and M = |1

~1
1
. o 0 0

—_ =

Observe that we have chosen M such that by definition of w;, ws, w3, we have W = VM.
Observe first that V has rank 3 and is invertible, since its columns are linearly independent (Inverse
Theorem).

Next, we compute the rank of M. From the lecture, we know that the rank of a matrix is equal to
the number of pivots after using Gauss elimination on the matrix. We use this on M subtracting
the first row of M once from its second row, we get the triangular matrix

—1

=

1
0 2
0 0
which means that M has rank 3 as well. In other words, the columns of M are linearly independent
and hence M is invertible.

By Lemma 3.9, we conclude that 1/ is invertible as it can be written as the product of two invertible
matrices. By the Inverse Theorem, the columns of W are linearly independent, as desired.

7. We will use statements from Exercise 6 on Assignment 4 without reproving them.

a) We know that L is a square lower triangular matrix with 1’s on the diagonal. By Exercise 6
on Assignment 4, it follows that L is invertible. From the lecture we know that this also
implies invertibility of L.

b) Observe that L' is upper triangular. Using Exercise 6 on Assignment 4, we conclude that
(L)~ is also upper triangular. Moreover, U is upper triangular. It remains to observe that
the product of two upper triangular matrices is upper triangular again: Indeed, let 7, j € [m]
be arbitrary with 7 > j and consider the entry D;;. Let v.€ R™ be the i-th row of U, and
let w € R™ be the j-th column of (LT)~!. By definition of matrix multiplication, we have
D;; = v - w. But since the first ¢ — 1 entries of v are zero, the last m — j entries of w are
zero, and 7 > j, we can conclude D;; = v - w = 0. Thus, D is upper triangular.

¢) Plugging in the definition of D, we indeed get LDL" = LU(LT)"'LT = LU = A.

d) Since L is invertible, we can rewrite LDL' = Ato D = L' A(LT)~!. We further observe
that
DT — (L_lA(LT)_l)T — L—IAT(LT)—I — L—IA(LT)—I
where we used symmetry of A in the last step. Plugging in A = LU and using L™'L = I,
we get DT = U(LT)~! = D. In other words, D is symmetric as well.

e) We know that D is upper triangular from subtask b). By symmetry, this implies that D is
lower triangular as well. We conclude that D is diagonal.



