Solution for Assignment 5

1. a) We will use the elimination procedure on A in order to get the upper triangular matrix U and the lower triangular matrix L. First, we multiply A with

 $E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ $E_{31}E_{21}A = \begin{bmatrix} 2 & -12 & 6 \\ 0 & 2 & -2 \\ 0 & 1 & -11 \end{bmatrix}.$

to get

and

We also note down the coefficients
$$\ell_{21} = \frac{1}{2}$$
 and $\ell_{31} = 1$ for L. Note that these are just the negated entries of E_{21} and E_{31} , respectively. Next, we multiply this with $E_{32} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix}$ and get

$$E_{32}E_{31}E_{21}A = \begin{bmatrix} 2 & -12 & 6\\ 0 & 2 & -2\\ 0 & 0 & -10 \end{bmatrix} =: U$$

which is upper triangular. We also write down $\ell_{32} = \frac{1}{2}$. From the lecture we know that we can obtain L as

$$L = \begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 1 & \frac{1}{2} & 1 \end{bmatrix}$$

Indeed, checking

$$LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 1 & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 2 & -12 & 6 \\ 0 & 2 & -2 \\ 0 & 0 & -10 \end{bmatrix} = \begin{bmatrix} 2 & -12 & 6 \\ 1 & -4 & 1 \\ 2 & -11 & -5 \end{bmatrix} = A$$

we conclude that this is a valid LU factorization of A.

b) Since L is lower triangular, we can start substituting from the top. In particular, writing out the equation gives

$$L\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 1 & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \stackrel{!}{=} \begin{bmatrix} 4 \\ 4 \\ 25 \end{bmatrix} = \mathbf{b}.$$

Hence, we get $y_1 = 4$, $y_2 = 4 - 2 = 2$, and $y_3 = 25 - 1 - 4 = 20$.

c) We first write down the system again as

$$U\mathbf{x} = \begin{bmatrix} 2 & -12 & 6 \\ 0 & 2 & -2 \\ 0 & 0 & -10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \stackrel{!}{=} \begin{bmatrix} 4 \\ 2 \\ 20 \end{bmatrix} = \mathbf{y}.$$

By using back substitution we obtain $x_3 = \frac{20}{-10} = -2$, $x_2 = \frac{2-4}{2} = -1$, and $x_1 = \frac{4-12+12}{2} = 2$.

d) Using the results from the previous two subtasks we get

$$A\mathbf{x} \stackrel{LU}{=} LU\mathbf{x} = L(U\mathbf{x}) \stackrel{c}{=} L\mathbf{y} \stackrel{b}{=} \mathbf{b}.$$

2. We perform Gauss-Jordan elimination on

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 1 & 4 \\ 3 & 6 & 2 & 5 \end{bmatrix}.$$

Our first pivot is already 1, so we can eliminate in the first column to get

$$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 2 & -4 \end{bmatrix}.$$

The second column is already done so we move on to eliminate in the third column. Luckily, our pivot is already 1 again so we do not have to normalize. We obtain

$$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and observe that we are done since this matrix is in row echolon form. In other words, this is our R_0 and we can check that it corresponds exactly to R on the first two rows.

3. a) The inverse of A is $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$. To justify this, it suffices to check that

 AA^{-1} indeed equals *I*. But let us still explain how we found A^{-1} : Finding A^{-1} can be done by finding vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \in \mathbb{R}^4$ (columns of A^{-1}) such that

$$A\mathbf{v}_i = \mathbf{e}_i$$

for all $i \in \{1, 2, 3, 4\}$, where e_i is the *i*-th standard unit vector. Using e.g. elimination to solve these systems, we get

$$\mathbf{v}_1 = \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

and thus $A^{-1} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$. Alternatively, one might also

be able to guess the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_4$ by noticing that by subtracting the (i + 1)-th column of A from the *i*-th column of A, we get \mathbf{e}_i , for all $i \in \{1, 2, 3\}$ (and that $\mathbf{v}_4 = \mathbf{e}_4$).

b) We solve this exercise by guessing that the pattern from a) also works in general. Concretely, we define the matrix B ∈ ℝ^{m×m} with columns v₁,..., v_m ∈ ℝ^m such that v_i := e_i - e_{i+1} for all i ∈ {1,2,...,m-1} and v_m := e_m. We claim that B is the unique inverse of A. To prove this, first observe that the *i*-th row of A is given by ∑ⁱ_{k=1} e^T_k. This means that the entry (AB)_{ij} is given by

$$(AB)_{ij} = \big(\sum_{k=1}^{i} \mathbf{e}_{k}^{\top}\big)\mathbf{v}_{j} = \sum_{k=1}^{i} \mathbf{e}_{k}^{\top}\mathbf{v}_{j}$$

for all $i, j \in [m]$. Let now $i, j \in [m]$ be arbitrary. We distinguish three cases.

- Assume first j < i. Then we get $\sum_{k=1}^{i} \mathbf{e}_{k}^{\top} \mathbf{v}_{j} = \sum_{k=1}^{i} \mathbf{e}_{k}^{\top} (\mathbf{e}_{j} \mathbf{e}_{j+1}) = \mathbf{e}_{j}^{\top} \mathbf{e}_{j} \mathbf{e}_{j+1}^{\top} \mathbf{e}_{j+1} = 0.$
- Next, assume j > i. Observe that in this case, we have e^T_k v_j = 0 for all k ∈ [i] and thus (AB)_{ij} = 0.
- Finally, we observe that $\sum_{k=1}^{i} \mathbf{e}_{k}^{\top} \mathbf{v}_{j} = \mathbf{e}_{j}^{\top} \mathbf{e}_{j} = 1$ for i = j.

We conclude that AB = I and thus B is the unique inverse of A.

4. We solve both subtasks at once using the CR-decomposition. Consider the matrix

\mathbf{u}_1	\mathbf{u}_2	\mathbf{u}_3	b

obtained by using $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{b}$ as columns. Concretely, we have

$$\begin{bmatrix} | & | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{b} \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} 2 & -1 & 2 & 1 \\ -4 & 5 & -5 & -2 \\ 8 & 5 & 5 & 6 \\ 2 & 2 & 1 & 2 \end{bmatrix}$$

We compute the CR-decomposition of this matrix. After dividing the first row by 2 and eliminating the first column, we get

$$\begin{bmatrix} 1 & -\frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 3 & -1 & 0 \\ 0 & 9 & -3 & 2 \\ 0 & 3 & -1 & 1 \end{bmatrix}$$

Next, we divide the second row by 3 and eliminate in the second column to get

$$\begin{bmatrix} 1 & 0 & \frac{5}{6} & \frac{1}{2} \\ 0 & 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Finally, we divide the third row by 2 and eliminate in the fourth column to obtain

$$\begin{bmatrix} 1 & 0 & \frac{5}{6} & 0 \\ 0 & 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

-

We conclude that our matrix has CR-decomposition

$$\begin{bmatrix} | & | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{b} \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{b} \\ | & | & | \end{bmatrix} \begin{bmatrix} 1 & 0 & \frac{5}{6} & 0 \\ 0 & 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Interpreting this result, we deduce that **b** cannot be written as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ since we have a pivot in the fourth column. Moreover, the reduced row echolon form also shows that \mathbf{u}_3 is dependent on \mathbf{u}_1 and \mathbf{u}_2 . Hence, the three vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly dependent.

5. Each of the four points yields one linear equation with variables a, b, c, d. For example, for x = 4, y = 5 we get the equation

$$a4^3 + b4^2 + c4 + d = 5.$$

In total, we get the linear system

$$a0^{3} + b0^{2} + c0 + d = 1$$

$$a2^{3} + b2^{2} + c2 + d = 2$$

$$a4^{3} + b4^{2} + c4 + d = 5$$

$$a6^{3} + b6^{2} + c6 + d = 6$$

with four equations and four variables that we can write in matrix form as

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 4 & 8 \\ 1 & 4 & 16 & 64 \\ 1 & 6 & 36 & 216 \end{bmatrix} \begin{bmatrix} d \\ c \\ b \\ a \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \\ 6 \end{bmatrix}.$$

We now want to solve this system by using the elimination technique. For this, it is convenient to apply the row operations to the system matrix and the right-hand side simultaneously by appending the right-hand side to the matrix as follows:

After performing elimination in the first column we get

Next, we perform elimination in the second columns to get

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | \ 1 \\ 0 & 2 & 4 & 8 & | \ 1 \\ 0 & 0 & 8 & 48 & 2 \\ 0 & 0 & 24 & 192 & 2 \end{bmatrix}$$

Finally, we obtain

It remains to perform backward substitution. From the last row, we get $a = -\frac{4}{48} = -\frac{1}{12}$. Next, we get $b = \frac{2-48a}{8} = \frac{6}{8} = \frac{3}{4}$. From the second row we obtain $c = \frac{1-8a-4b}{2} = \frac{1+\frac{2}{3}-3}{2} = -\frac{2}{3}$. Finally, we get d = 1 from the first row. Hence, the function $f(x) = -\frac{1}{12}x^3 + \frac{3}{4}x^2 - \frac{2}{3}x + 1$ interpolates all of our datapoints.

6. We want to prove that w_1, w_2, w_3 are linearly independent. Consider the matrices

$$W \coloneqq \begin{bmatrix} | & | & | \\ \mathbf{w}_1 & \mathbf{w}_2 & \mathbf{w}_3 \\ | & | & | \end{bmatrix}, V \coloneqq \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ | & | & | \end{bmatrix}, \text{ and } M \coloneqq \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Observe that we have chosen M such that by definition of $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$, we have W = VM. Observe first that V has rank 3 and is invertible, since its columns are linearly independent (Inverse Theorem).

Next, we compute the rank of M. From the lecture, we know that the rank of a matrix is equal to the number of pivots after using Gauss elimination on the matrix. We use this on M: subtracting the first row of M once from its second row, we get the triangular matrix

$$\begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

which means that M has rank 3 as well. In other words, the columns of M are linearly independent and hence M is invertible.

By Lemma 3.9, we conclude that W is invertible as it can be written as the product of two invertible matrices. By the Inverse Theorem, the columns of W are linearly independent, as desired.

- 7. We will use statements from Exercise 6 on Assignment 4 without reproving them.
 - a) We know that L is a square lower triangular matrix with 1's on the diagonal. By Exercise 6 on Assignment 4, it follows that L is invertible. From the lecture we know that this also implies invertibility of L^{\top} .
 - **b**) Observe that L^{\top} is upper triangular. Using Exercise 6 on Assignment 4, we conclude that $(L^{\top})^{-1}$ is also upper triangular. Moreover, U is upper triangular. It remains to observe that the product of two upper triangular matrices is upper triangular again: Indeed, let $i, j \in [m]$ be arbitrary with i > j and consider the entry D_{ij} . Let $\mathbf{v} \in \mathbb{R}^m$ be the *i*-th row of U, and let $\mathbf{w} \in \mathbb{R}^m$ be the *j*-th column of $(L^{\top})^{-1}$. By definition of matrix multiplication, we have $D_{ij} = \mathbf{v} \cdot \mathbf{w}$. But since the first i 1 entries of \mathbf{v} are zero, the last m j entries of \mathbf{w} are zero, and i > j, we can conclude $D_{ij} = \mathbf{v} \cdot \mathbf{w} = 0$. Thus, D is upper triangular.
 - c) Plugging in the definition of D, we indeed get $LDL^{\top} = LU(L^{\top})^{-1}L^{\top} = LU = A$.
 - d) Since L is invertible, we can rewrite $LDL^{\top} = A$ to $D = L^{-1}A(L^{\top})^{-1}$. We further observe that

$$D^{\top} = \left(L^{-1}A(L^{\top})^{-1}\right)^{\top} = L^{-1}A^{\top}(L^{\top})^{-1} = L^{-1}A(L^{\top})^{-1}$$

where we used symmetry of A in the last step. Plugging in A = LU and using $L^{-1}L = I$, we get $D^{\top} = U(L^{\top})^{-1} = D$. In other words, D is symmetric as well.

e) We know that D is upper triangular from subtask b). By symmetry, this implies that D is lower triangular as well. We conclude that D is diagonal.