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Solution for Assignment 6

1. a) Since H is a hyperplane, there exists a non-zero vector d ∈ Rm such that H = {v ∈ Rm :
v · d = 0}. In order to prove that H is a subspace of Rm, we have to prove that H is non-
empty and closed under vector addition and scalar multiplication. By definition, 0 ∈ H and
hence H is non-empty. It remains to prove that, given arbitrary v,w ∈ H and c ∈ R, we
also have (v +w) ∈ H and cv ∈ H . Indeed, we observe

(v +w) · d = v · d+w · d = 0 + 0 = 0

and hence (v +w) is in H . Similarly, we have

(cv) · d = c(v · d) = c0 = 0

and therefore (cv) ∈ H . We conclude that H is a subspace of Rm.

b) Let H = {v ∈ Rm : v · d = 0} for some non-zero d ∈ Rm. Consider the standard unit
vectors e1, . . . , em ∈ Rm and let di := ei · d for all i ∈ [m]. Observe that we must have
dj ̸= 0 for some j ∈ [m], because d is non-zero. For every i ∈ [m], define the vector
vi := ei − di

dj
ej . We claim that the set of vectors {vi : i ̸= j} is a basis of H .

To prove this, observe first that the set of vectors {vi : i ̸= j} is linearly independent:
Indeed, each of the vectors controls its own coordinate (namely i) and hence there is no way
of obtaining the vectors 0 by a non-trivial linear combination of vectors in {vi : i ̸= j}.
Next, observe that, by definition, we have

vi · d = ei · d− di
dj

ej · d = di − di = 0

for all i ∈ [m]\{j}, and thus {vi : i ̸= j} ⊆ H . It remains to prove that the vectors span all
of H . Let u =

[
u1 u2 . . . um

]⊤ ∈ Rm be an arbitrary vector with u ·d =
∑m

i=1 uidi =
0. Observe that this implies

∑
i∈[m]\{j} uidi = −ujdj . Using this, we get

∑
i∈[m]\{j}

uivi =
∑

i∈[m]\{j}

ui(ei −
di
dj

ej)

=
∑

i∈[m]\{j}

uiei −
( ∑
i∈[m]\{j}

uidi
) 1

dj
ej

=
∑

i∈[m]\{j}

uiei + ujej

= u,

which means that u ∈ Span{vi : i ̸= j}. This proves that {vi : i ̸= j} is a basis of H , and
we concldue that the dimension of H is m− 1.

c) Note that precise notation is very important here: f ∈ V is a function and we write f(x) ∈ R
for the value of f evaluated at point x ∈ [0, 1]. In particular, f and f(x) are very different
types of objects. Note that the symbol + is overloaded in the following sense: for two
functions f ,g ∈ V and x ∈ [0, 1], the + in the expression f(x) + g(x) denotes the normal
addition of real numbers while the + in the expression f + g is the addition of functions
defined in this exercise.
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First, note that U is non-empty since every constant function is in U . Thus, consider arbitrary
functions f ,g ∈ U and scalar c ∈ R. For any x ∈ [0, 1], we have

(f + g)(x)
def
= f(x)+ g(x)

f∈U
= f(1− x)+ g(x)

g∈U
= f(1− x)+ g(1− x)

def
= (f + g)(1− x)

and therefore the function f + g is in U . Similarly, we have

(cf)(x)
def
= cf(x)

f∈U
= cf(1− x)

def
= (cf)(1− x)

and hence cf ∈ U . We conclude that U is indeed a subspace of V .

2. Let H be the hyperplane H = {u ∈ Rm : u · v = 0}. By exercise 1b), we know that H has
dimension m− 1. Let a1, . . . ,am−1 ∈ H be a basis of H . We define the matrices

Ai :=

[
. . . a⊤i . . .
. . . 0⊤ . . .

]
∈ R2×m, Bi :=

[
. . . 0⊤ . . .
. . . a⊤i . . .

]
∈ R2×m

for every i ∈ [m − 1]. Observe that we have Aiv = 0 and Biv = 0 and thus Ai, Bi ∈ Sv for
all i ∈ [m − 1]. We claim that the matrices A1, . . . , Am−1, B1, . . . , Bm−1 form a basis of Sv. In
order to prove this, we first argue that they are linearly independent: For this, consider an arbitrary
linear combination

m−1∑
i=1

λiAi +
m−1∑
i=1

µiBi = 0

with λi, µi ∈ R for all i ∈ [m−1]. Observe that, by definition of A1, . . . , Am−1 and B1, . . . , Bm−1,
this implies

∑m−1
i=1 λiai = 0 as well as

∑m−1
i=1 µiai = 0. Since a1, . . . ,am−1 are linearly inde-

pendent, we conclude that λ1 = · · · = λm−1 = 0 and µ1 = · · · = µm−1 = 0. Hence, our set of
matrices must be linearly independent. It remains to prove that our set of matrices spans Sv. For
this, let C ∈ Sv be arbitrary with

C =

[
. . . c⊤1 . . .
. . . c⊤2 . . .

]
.

The condition Cv = 0 implies c1 · v = 0 and c2 · v = 0 and therefore c1, c2 ∈ H . Hence,
there exist scalars λ1, . . . , λm−1 ∈ R and µ1, . . . , µm−1 ∈ R such that

∑m−1
i=1 λiai = c1 and∑m−1

i=1 µiai = c2. We conclude that

C =
m−1∑
i=1

(λiAi + µiBi)

and thus C ∈ Span(A1, . . . , Am−1, B1, . . . , Bm−1), as desired. This proves that our set of matri-
ces is a basis and we conclude that the dimension of Sv is 2(m− 1).

3. We want to prove that U ∪W is a subspace of V if and only if U ⊆ W or W ⊆ U .

“ ⇐= ” If U ⊆ W , then U ∪W = W is a subspace of V by assumption. The same reasoning applies
in the case W ⊆ U .

“ =⇒ ” Assume now that U ∪ W is a subspace of V , and assume that W ̸⊆ U (otherwise, we are
done). Then there exists w ∈ W \U . Let u ∈ U be arbitrary. Observe that, since U ∪W is a
subspace, we must have u+w ∈ U∪W . But u+w ∈ U would imply that w = (u+w)−u
is in U as well. Hence, we conclude u +w ∈ W . By w ∈ W and u +w ∈ W we finally
obtain u = (u + w) − w ∈ W . We have proven that every vector in U is also in W , and
thus conclude U ⊆ W .
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4. Recall that the dimension of a subspace is defined as the size of a basis of that subspace. So to
solve this exercise, it suffices to come up with a basis of Sm. It might be instructive to first consider
the case m = 2. In the case of S2, the three matrices[

1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
1 0

]
form a basis: None of the matrices can be obtained from the others because each of the three
matrices has a non-zero entry at a place where none of the other matrices has a non-zero entry
(i.e. the three matrices are linearly independent). Moreover, every symmetric 2× 2 matrix can be
obtained as linear combination of those three matrices because it must have the form[

a b
b d

]
= a

[
1 0
0 0

]
+ b

[
0 1
1 0

]
+ d

[
0 0
0 1

]
for some a, b, d ∈ R (i.e. the three matrices span all of S2).

This idea generalizes to Sm. In particular, for i, j ∈ [m] with i ≤ j, define the m×m matrix B(ij)

by

B
(ij)
ℓk =


1 if ℓ = i and k = j

1 if ℓ = j and k = i

0 otherwise

for all ℓ, k ∈ [m]. Observe that for i = j, B(ij) contains a single 1 on its diagonal and is zero
everywhere else. For i < j, we find exactly two 1s in B(ij) and zeroes everywhere else. We claim
that the set of matrices

B = {B(ij) : i, j ∈ [m], i ≤ j}

is a basis of Sm.

We first check linear independence. Let i, j ∈ [m] with i ≤ j be arbitrary. Then B
(ij)
ij = 1

but none of the other matrices in the set has a non-zero entry at position (i, j). So B(ij) cannot
be obtained as a linear combination of the other matrices. We conclude that set of matrices B is
independent.

Let now S ∈ Sm be an arbitrary symmetric m × m matrix. For all i, j ∈ [m], we must have
Sij = Sji by symmetry. Thus, we can write

S =
∑

i,j∈[m]:i≤j

SijB
(ij)

and therefore we conclude that B spans all of Sm.

Finally, observe that |B| = 1+2+3+ · · ·+m = m(m+1)
2 . Hence, the dimension of Sm is m(m+1)

2 .

5. a) Note that the function 0 : x ∈ R 7→ 0 is both in O and E. Hence, both sets are non-empty.
Thus, it remains to prove that both O and E are closed under vector addition and scalar
multiplication. We start with O. Let f ,g ∈ O and c ∈ R be arbitrary. We have

(f + g)(−x) = f(−x) + g(−x) = −f(x)− g(x) = −(g + f)(x)

for all x ∈ R and hence f + g ∈ O. Similarly, we have

(cf)(−x) = cf(−x) = −cf(x) = −(cf)(x)

for all x ∈ R which proves cf ∈ O. We conclude that O is a subspace of V .
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We proceed analogously for E. Let f ,g ∈ E and c ∈ R be arbitrary. We have

(f + g)(−x) = f(−x) + g(−x) = f(x) + g(x) = (g + f)(x)

for all x ∈ R and hence f + g ∈ E. And also

(cf)(−x) = cf(−x) = cf(x) = (cf)(x)

for all x ∈ R which proves cf ∈ E. We conclude that E is a subspace of V .

b) We already know that 0 is in both O and E and therefore 0 ∈ O ∩ E.

Now consider an arbitrary function f ∈ O ∩ E and fix x ∈ R. By definition of O, we have
f(−x) = −f(x). By definition of E, we also get f(−x) = f(x). We conclude that we must
have −f(x) = f(x). But this implies f(x) = 0. Since this works for any x ∈ R, we conclude
that f must be the zero function 0. Hence, 0 is the only function in O ∩ E.

c) Let f ∈ V be arbitrary and define

g(x) :=
1

2
(f(x) + f(−x))

h(x) :=
1

2
(f(x)− f(−x))

for all x ∈ R. Observe that we have f = g + h. It remains to prove g ∈ E and h ∈ O: For
all x ∈ R we have

g(−x) =
1

2
(f(−x) + f(−(−x))) =

1

2
(f(x) + f(−x)) = g(x)

and hence g ∈ E. Similarly, we have

h(−x) =
1

2
(f(−x)− f(−(−x))) =

1

2
(f(−x)− f(x)) = −1

2
(f(x)− f(−x)) = −h(x)

for all x ∈ R. Hence, h ∈ O.

6. The subspace Span(p,q, r) has dimension 3. We will prove this by showing that p,q, r are
linearly independent and hence a basis of Span(p,q, r). For this, let λ, µ, γ ∈ R such that λp +
µq + γr = 0. If we can prove that this implies λ = µ = γ = 0, we can conclude that the three
polynomials p,q, r are linearly independent.

Since p is the only one of the tree polynomials involving a non-zero coefficient for x3, we must
have λ = 0. This further implies that we have µq + γr = 0. Since r has a non-zero coefficient
for x1, but p does not, we next observe that we must have γ = 0. This means that we are left with
µq = 0 and hence µ = 0.

We conclude that there is no non-trivial linear combination of p,q, r ∈ R[x] that yields 0 ∈
R[x]. Therefore, the three polynomials are linearly independent. By definition, p,q, r span
Span(p,q, r) and we conclude that they are a basis of size 3. This proves that the dimension
of this subspace is 3.
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7. 1. Let U1, U2 be arbitrary subspaces of Rm. Which of the following subsets of Rm must be
subspaces of Rm as well?

√
(a) U1 ∩ U2

Explanation: For vectors u,v ∈ U1∩U2 and a scalar c ∈ Rwe need to prove that u+v ∈ U1∩U2

and cv ∈ U1 ∩ U2. By u,v ∈ U1 ∩ U2, we also get u,v ∈ U1 and u,v ∈ U2. Since U1 and U2

are subspaces, this implies u+ v ∈ U1, cv ∈ U1, u+ v ∈ U2, and cv ∈ U2. Hence, we also have
u+ v ∈ U1 ∩ U2, and cv ∈ U1 ∩ U2.

(b) U1 ∪ U2

Explanation: The set U1 ∪ U2 is in general not a subspace of Rm. For example, U1 and U2 could
be distinct hyperplanes of Rm. Then, by exercise 1, both U1 and U2 are subspaces of Rm but
adding a vector u1 ∈ U1 with a vector u2 ∈ U2 can take us outside of U1 ∪ U2.

(c) U1 \ U2 := {u ∈ U1 : u /∈ U2}

Explanation: The set U1 \ U2 can never be a subspace because the 0 is missing.

(d) ∅

Explanation: By definition, a subspace has to be nonempty.

√
(e) {0}

Explanation: Adding any two vectors from {0} gives us 0 again. Similarly, multiplying with a
scalar always gives us 0 as well.

√
(f) U1 + U2 := {u1 + u2 : u1 ∈ U1,u2 ∈ U2}

Explanation: The set U1+U2 is a subspace by design. Consider arbitrary vectors u,v ∈ U1+U2

and scalar c ∈ R. By definition of U1+U2, we can write u = u1+u2 with u1 ∈ U1 and u2 ∈ U2.
Similarly, we can write v = v1 + v2 with v1 ∈ U1 and v2 ∈ U2. Then we have

u+ v = (u1 + u2) + (v1 + v2) = (u1 + v1) + (u2 + v2) ∈ U1 + U2

and
cv = c(v1 + v2) = (cv1) + (cv2) ∈ U1 + U2.
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2. Consider the vectors

v1 =


1
2
3
4

 and v2 =


7
6
5
4

 .

Which of the following sets of vectors is a basis of R4?

(a) v1, v2,


1
0
−2
0

 ,


0
1
2
0

 ,


0
0
0
1




A set of 5 vectors fromR4 can never be linearly independent. Hence, this is not a basis.

(b) v1, v2,


0
1
0
0

 ,


0
0
0
0




The zero vector is linearly dependent on all other vectors. Hence, this is not a basis.

√
(c) v1, v2,


1
0
0
0

 ,


0
1
0
0




These 4 vectors are linearly independent. If we put them as columns into a matrix A, then A will have full rank.

By the inverse theorem, the system Ax = b will have a unique solution for all b ∈ R4. Thus, C(A) = R4 or

in other words, the four vectors span all ofR4. Thus, they are a basis ofR4.

6



3. Which of the following matrices are in row echelon form?

(a)

1 0 2 4
0 0 1 5
0 0 0 0


Not in row echolon form because of the 2 in the first row.

√
(b)

1 0 2 4
0 1 1 5
0 0 0 0


This is in row echolon form. There are two pivots, one in the first column and one in the second column.

√
(c)

1 0 0 4
0 0 1 5
0 0 0 0


This is in row echolon form. The pivots are in the first and third column.

(d)

1 0 2 4
0 1 1 5
0 0 1 0


Not in row echolon form because the 1 and 2 in the first and second row of the third column have not been

eliminated.
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