
Lecture plan Linear Algebra (401-0131-00L, HS24), ETH Zürich
Numbering of Sections, Definitions, Figures, etc. as in the Lecture Notes

Week 3

Matrices and linear transformations (Section 2.3)

Matrix as a “transformation:”
input matrix output
x ∈ Rn A ∈ Rm×n Ax ∈ Rm

Definition 2.25: Let A be an m× n matrix. TA : Rn → Rm is the function defined by

TA( x︸︷︷︸
∈Rn

) = Ax︸︷︷︸
∈Rm

.

Example: A =

[
0 1
1 0

]
TA

([
x1

x2

])
=

[
0 1
1 0

] [
x1

x2

]
=

[
x2

x1

]
(”swap coordinates”)

Observation 2.26: Let A be an m× n matrix, x,y ∈ Rn and λ ∈ R. Then

(i) TA(x+ y) = TA(x) + TA(y) and

(ii) TA(λx) = λTA(x).

Combining (i) and (ii): TA(λx+ µy) = λTA(x) + µTA(y).

Proof. This just says (i) A(x + y) = Ax + Ay and (ii) A(λx) = λAx; both are true by the
rules of vector addition, scalar multiplication, matrix multiplication.

Transforming a set X of inputs: TA(X) := {TA(x) : x ∈ X}
Examples R2 → R2: TA(e1) = Ae1, TA(e2) = Ae2, the two columns of A

TA(X)

TA(e1)

TA(e2)

A =

[
1 0
0 3

4

]
←−

X

e1

e2

A =

[
0 1
1 0

]
−→

TA(X)
TA(e1)

TA(e2)

stretching inputs mirroring

TA(X)

TA(e1)TA(e2)

A =

[
1√
2
− 1√

2
1√
2

1√
2

]
←−

X

e1

e2

A =

[
1 −1

2

0 1

]
−→

TA(X)

TA(e1)

TA(e2)

rotation inputs shear
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Example R3 → R2: orthogonal projection

 0
0
0

  1
0
0



 0
0
1



 1
1
1



 1
1
0



 0
1
1



 0
1
0



 1
0
1


A =

[
2 −1 −1
0 2 −1

]
−→

[
0
0

] [
2
0

]

[
−1
2

] [
1
2

]

[
−1
−1

]

[
−2
1

] [
0
1

]

[
1

−1

]

inputs projection

Linear transformations:
Definition 2.27: A function T : Rn → Rm is called a linear transformation if for all x,y ∈ Rn

and all λ ∈ R,

(i) T (x+ y) = T (x) + T (y) and

(ii) T (λx) = λT (x).

Combining (i) and (ii): T (λx+ µy) = λT (x) + µT (y).

All TA’s are linear transformations (Observation 2.26).
(i) and (ii): axioms of linear transformations

T
x,y −→ T (x), T (y)

+
y y +

x+ y −→ T (x+ y) = T (x) + T (y)
T

T
x −→ T (x)

·λ
y y ·λ

λx −→ T (λx) = λT (x)
T

commutative diagrams: T “commutes” with + and ·
Examples: T = TA for . . .

• T (x) =
∑n

i=1 xi A =
[
1 1 · · · 1

]
• T (x) = 0 A = 0

• T (x) = x A = I

Counterexamples: violation of . . .

• T (x) =
∑n

i=1 |xi| (ii): if x ̸= 0 and λ < 0, then T (λx) > 0 but λT (x) < 0

• T (x) = u with fixed u ̸= 0 (i): T (x+ y) = u but T (x) + T (y) = 2u
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Lemma 2.28: Let T : Rn → Rm be a linear transformation, let x1,x2, . . . ,xℓ ∈ Rn and
λ1, λ2, . . . , λℓ ∈ R. Then

T

(
ℓ∑

j=1

λjxj

)
=

ℓ∑
j=1

λjT (xj).

ℓ = 0: T (0) = 0, true by (ii) ℓ = 1: (ii) ℓ = 2: combination of (i) and (ii) ℓ > 2?

Proof.

T

(
ℓ∑

j=1

λjxj

)
= T

(
ℓ−1∑
j=1

λjxj + λℓxℓ

)
(i)
= T

(
ℓ−1∑
j=1

λjxj

)
+T (λℓxℓ)

(ii)
= T

(
ℓ−1∑
j=1

λjxj

)
+λℓT (xℓ) .

Same for ℓ− 1:

T

(
ℓ∑

j=1

λjxj

)
= T

(
ℓ−2∑
j=1

λjxj

)
+ λℓ−1T (xℓ−1)︸ ︷︷ ︸

T (
∑ℓ−1

j=1 λjxj)

+λℓT (xℓ) .

Repeating for ℓ− 2, . . . , 1:

T

(
ℓ∑

j=1

λjxj

)
= T

(
0∑

j=1

λjxj

)
︸ ︷︷ ︸

T (0)=0

+λ1T (x1) + . . .+ λℓ−1T (xℓ−1) + λℓT (xℓ) =
ℓ∑

j=1

λjT (xj).

Proof by induction (without “repeating”):
For ℓ = 0, prove it directly (base case): statement reads as T (0) = 0 which is true.
For ℓ > 0, prove the induction step: if the statement is true for ℓ − 1 (induction hypothesis),
then it is also true for ℓ.
Having done this, we know that the statement is true for all ℓ. Induction step:

T

(
ℓ∑

j=1

λjxj

)
= T

(
ℓ−1∑
j=1

λjxj + λℓxℓ

)
(i)
= T

(
ℓ−1∑
j=1

λjxj

)
+ T (λℓxℓ)

(ii)
= T

(
ℓ−1∑
j=1

λjxj

)
+ λℓT (xℓ) (as before)

=
ℓ−1∑
j=1

λjT (xj) + λℓT (xℓ) (induction hypothesis)

=
ℓ∑

j=1

λjT (xj).
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The matrix of a linear transformation:
Theorem 2.29: Let T : Rn → Rm be a linear transformation. There exists a unique m × n
matrix A such that T = TA.

Proof. For T = TA, we need T (ej) = TA(ej) = Aej (j-th column of A), for all j ∈ [n]. Only
candidate is

A =

 | | |
T (e1) T (e2) · · · T (en)
| | |

 .

This works:

TA(x) = Ax (Definition 2.25, TA)

=
n∑

j=1

xjT (ej) (Definition 2.4, matrix-vector multiplication)

= T

(
n∑

j=1

xjej

)
(Lemma 2.28)

= T (x).

Consequence: If we know T (e1), T (e2), . . . , T (en), we know T (x) for all x ∈ Rn.

Linear transformations and matrix multiplication:
Lemma 2.30: Let TA : Rn → Ra and TB : Rb → Rn be two linear transformations. Then

TA(TB(x)) = TAB(x).

Proof.
TA(TB(x)) = TA(Bx) = A(Bx) = (AB)x = TAB(x).

Can be used to prove generalized associativity, for example (AB)(CD) = A((BC)D):

T(AB)(CD)(x) = TAB(TCD(x)) = TAB(TC(TD(x))) = TA(TB(TC(TD(x))))

TA((BC)D)(x) = TA(T(BC)D(x)) = TA(TBC(TD(x))) = TA(TB(TC(TD(x)))

Same functions⇒ same matrices (Theorem 2.29).

Systems of linear equations (Section 3.1)

D = 2S

D = C + 3

D + S + C = 17

children’s age puzzle (Section 0.3)

x1 − 2x2 = 0

x1 − x3 = 3

x1 + x2 + x3 = 17

standard form (x1 = D, x2 = S, x3 = C)
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Definition 3.1: A system of linear equations in m equations and n variables x1, x2, . . . , xn is
of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm,

The aij and bi: known real numbers The xi: unknown real numbers (to be computed)
Matrix-vector form:

Ax = b :


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn


︸ ︷︷ ︸

A, m×n


x1

x2
...
xn


︸ ︷︷ ︸
x∈Rn

=


b1
b2
...
bm


︸ ︷︷ ︸
b∈Rm

.

A: coefficient matrix x: vector of variables b: right-hand side
Solving the system: compute x ∈ Rn such that Ax = b.
Children’s age puzzle: 1 −2 0

1 0 −1
1 1 1


︸ ︷︷ ︸

A

x1

x2

x3


︸ ︷︷ ︸

x

=

 0
3
17


︸ ︷︷ ︸

b

.

Observation 3.2: Let A be an m× n matrix. The columns of A are linearly independent if
and only if the system Ax = 0 has a unique solution, x = 0.

Proof. Unique solution ⇔ 0 can only be written as a trivial linear combination of the
colums⇔ columns are linearly independent (Lemma 1.19).

The PageRank algorithm: works on link graph (circles: web pages, arrows: links)

2

1

3

4 5 6

Which page is most relevant?
Old school measure: number of citations (links to the page): page 2 (4 citations) wins.

5

https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#dfn.3.1
https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#obs.3.2
https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#lem.1.19


PageRank principles:

• Citation from a relevant page counts more.

• Citation from a page that cites many pages counts less.

→ relevance: sum of relevances of citing pages, divided by number of pages cited:

x2 =
x1

2
+ x4 + x5 +

x6

4
(same for the other 5 pages)

System of 6 linear equations in 6 variables! But with useless solution 0.
Fix: use damping factor d close to 1 (for example, d = 7/8):

x2 = (1− d) + d
(x1

2
+ x4 + x5 +

x6

4

)
Unique solution (rounded): page 3 (rank 1.7307) wins.

x1 = 0.31797, x2 = 1.6761, x3 = 1.7307, x4 = 0.31797, x5 = 1.0751, x6 = 0.88217.

Computer vectors and matrices: how to store a system of linear equations?
b ∈ Rm: array b with entries b[0], b[1], . . . , b[m− 1].

b =


b[0]
b[1]

...
b[m− 1]

 (computer vector)

Array indices start from 0, not from 1!
A ∈ Rm×n: array A with m entries A[0], A[1], . . . , A[m− 1]. Each A[i]: array with n entries.

A =



| A[0] |

| A[1] |

...

| A[m− 1] |

 (computer matrix in row notation)

A[i] =
[
A[i][0] A[i][1] · · · A[i][n− 1]

]
(computer row vector)

A[i][j] is the entry of A in row i and column j (both counting from 0).
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