Lecture plan Linear Algebra (401-0131-00L, HS24), ETH Zürich Numbering of Sections, Definitions, Figures, etc. as in the [Lecture Notes](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf)

Week 3

Matrices and linear transformations (Section [2.3\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#section.2.3)

Matrix as a "transformation:" $\cfrac{\text{input}}{\textbf{x} \in \mathbb{R}^n \, | \, A \in \mathbb{R}^{m \times n} \, | \, A\textbf{x} \in \mathbb{R}^m}$ **Definition [2.25](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#dfn.2.25)**: Let A be an $m \times n$ matrix. $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is the function defined by

$$
T_A(\underbrace{\mathbf{x}}_{\in \mathbb{R}^n}) = \underbrace{A\mathbf{x}}_{\in \mathbb{R}^m}.
$$

Example: $A =$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$
T_A\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} x_2\\ x_1 \end{bmatrix} \quad \text{("swap coordinates")}
$$

Observation [2.26](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#obs.2.26): Let A be an $m \times n$ matrix, $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Then

(i)
$$
T_A(\mathbf{x} + \mathbf{y}) = T_A(\mathbf{x}) + T_A(\mathbf{y})
$$
 and

(ii)
$$
T_A(\lambda \mathbf{x}) = \lambda T_A(\mathbf{x}).
$$

Combining (i) and (ii):
$$
T_A(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda T_A(\mathbf{x}) + \mu T_A(\mathbf{y})
$$
.

Proof. This just says (i) $A(x + y) = Ax + Ay$ and (ii) $A(\lambda x) = \lambda Ax$; both are true by the rules of vector addition, scalar multiplication, matrix multiplication. \Box

Transforming a set X of inputs: $T_A(X) := \{T_A(\mathbf{x}) : \mathbf{x} \in X\}$ Examples $\mathbb{R}^2 \to \mathbb{R}^2$: $T_A(\mathbf{e}_1) = A\mathbf{e}_1, T_A(\mathbf{e}_2) = A\mathbf{e}_2$, the two columns of A

$$
T_A(\mathbf{e}_2) \begin{picture}(120,140)(-10,0) \put(0,0){\line(1,0){180}} \put(10,0){\line(1,0){180}} \put(10,0){\
$$

stretching inputs inputs inputs in the mirroring

Example $\mathbb{R}^3 \to \mathbb{R}^2$: *orthogonal projection*

Linear transformations:

Definition [2.27](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#dfn.2.27): A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is called a *linear transformation* if for all $x, y \in \mathbb{R}^n$ and all $\lambda \in \mathbb{R}$,

- (i) $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ and
- (ii) $T(\lambda \mathbf{x}) = \lambda T(\mathbf{x})$.

Combining (i) and (ii): $T(\lambda x + \mu y) = \lambda T(x) + \mu T(y)$.

All T_A 's are linear transformations (Observation [2.26\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#obs.2.26).

(i) and (ii): *axioms* of linear transformations

T x, y −→ T(x), T(y) + y ^y ⁺ x + y −→ T(x + y) = T(x) + T(y) T T x −→ T(x) ·λ y ^y ·^λ λx −→ T(λx) = λT(x) T

commutative diagrams: T "commutes" with $+$ and \cdot

Examples: $T = T_A$ for ...

- $T(\mathbf{x}) = \sum_{i=1}^n x_i$ $\sum_{i=1}^n x_i$ $A =$ $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$
- $T(\mathbf{x}) = \mathbf{0}$ $A = 0$

•
$$
T(\mathbf{x}) = \mathbf{x}
$$
 $A = I$

Counterexamples: violation of ...

- $T(\mathbf{x}) = \sum_{i=1}^n |x_i|$ (ii): if $x \neq 0$ and $\lambda < 0$, then $T(\lambda x) > 0$ but $\lambda T(x) < 0$
- $T(\mathbf{x}) = \mathbf{u}$ with fixed $\mathbf{u} \neq \mathbf{0}$ (i): $T(\mathbf{x} + \mathbf{y}) = \mathbf{u}$ but $T(\mathbf{x}) + T(\mathbf{y}) = 2\mathbf{u}$

Lemma [2.28](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#lem.2.28): Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, let $x_1, x_2, \ldots, x_\ell \in \mathbb{R}^n$ and $\lambda_1, \lambda_2, \ldots, \lambda_\ell \in \mathbb{R}$. Then

$$
T\left(\sum_{j=1}^{\ell} \lambda_j \mathbf{x}_j\right) = \sum_{j=1}^{\ell} \lambda_j T(\mathbf{x}_j).
$$

 $\ell = 0$: $T(\mathbf{0}) = \mathbf{0}$, true by (ii) $\ell = 1$: (ii) $\ell = 2$: combination of (i) and (ii) $\ell > 2$? *Proof.*

$$
T\left(\sum_{j=1}^{\ell} \lambda_j \mathbf{x}_j\right) = T\left(\sum_{j=1}^{\ell-1} \lambda_j \mathbf{x}_j + \lambda_{\ell} \mathbf{x}_{\ell}\right) \stackrel{(i)}{=} T\left(\sum_{j=1}^{\ell-1} \lambda_j \mathbf{x}_j\right) + T\left(\lambda_{\ell} \mathbf{x}_{\ell}\right) \stackrel{(ii)}{=} T\left(\sum_{j=1}^{\ell-1} \lambda_j \mathbf{x}_j\right) + \lambda_{\ell} T\left(\mathbf{x}_{\ell}\right).
$$

Some for ℓ 1:

Same for $\ell - 1$:

$$
T\left(\sum_{j=1}^{\ell} \lambda_j \mathbf{x}_j\right) = T\left(\sum_{j=1}^{\ell-2} \lambda_j \mathbf{x}_j\right) + \lambda_{\ell-1} T\left(\mathbf{x}_{\ell-1}\right) + \lambda_{\ell} T\left(\mathbf{x}_{\ell}\right).
$$

$$
T(\sum_{j=1}^{\ell-1} \lambda_j \mathbf{x}_j)
$$

Repeating for $\ell - 2, \ldots, 1$:

$$
T\left(\sum_{j=1}^{\ell} \lambda_j \mathbf{x}_j\right) = \underbrace{T\left(\sum_{j=1}^{0} \lambda_j \mathbf{x}_j\right)}_{T(\mathbf{0})=\mathbf{0}} + \lambda_1 T(\mathbf{x}_1) + \ldots + \lambda_{\ell-1} T(\mathbf{x}_{\ell-1}) + \lambda_{\ell} T(\mathbf{x}_{\ell}) = \sum_{j=1}^{\ell} \lambda_j T(\mathbf{x}_j).
$$

Proof by induction (without "repeating"):

For $\ell = 0$, prove it directly (*base case*): statement reads as $T(\mathbf{0}) = \mathbf{0}$ which is true. For $\ell > 0$, prove the *induction step*: if the statement is true for $\ell - 1$ (*induction hypothesis*), then it is also true for ℓ .

Having done this, we know that the statement is true for all ℓ . Induction step:

 \Box

$$
T\left(\sum_{j=1}^{\ell} \lambda_j \mathbf{x}_j\right) = T\left(\sum_{j=1}^{\ell-1} \lambda_j \mathbf{x}_j + \lambda_{\ell} \mathbf{x}_{\ell}\right) \stackrel{(i)}{=} T\left(\sum_{j=1}^{\ell-1} \lambda_j \mathbf{x}_j\right) + T\left(\lambda_{\ell} \mathbf{x}_{\ell}\right)
$$
\n
$$
\stackrel{(ii)}{=} T\left(\sum_{j=1}^{\ell-1} \lambda_j \mathbf{x}_j\right) + \lambda_{\ell} T\left(\mathbf{x}_{\ell}\right) \quad \text{(as before)}
$$
\n
$$
= \sum_{j=1}^{\ell-1} \lambda_j T(\mathbf{x}_j) + \lambda_{\ell} T\left(\mathbf{x}_{\ell}\right) \quad \text{(induction hypothesis)}
$$
\n
$$
= \sum_{j=1}^{\ell} \lambda_j T(\mathbf{x}_j).
$$

 \Box

The matrix of a linear transformation:

Theorem [2.29](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#thm.2.29): Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. There exists a unique $m \times n$ matrix *A* such that $T = T_A$.

Proof. For $T = T_A$, we need $T(\mathbf{e}_j) = T_A(\mathbf{e}_j) = A\mathbf{e}_j$ (*j*-th column of A), for all $j \in [n]$. Only candidate is \mathbf{L} \mathbf{L}

$$
A = \begin{bmatrix} | & | & | \\ T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \\ | & | & | & | \end{bmatrix}.
$$

This works:

$$
T_A(\mathbf{x}) = A\mathbf{x}
$$
 (Definition 2.25, T_A)
= $\sum_{j=1}^n x_j T(\mathbf{e}_j)$ (Definition 2.4, matrix-vector multiplication)
= $T\left(\sum_{j=1}^n x_j \mathbf{e}_j\right)$ (Lemma 2.28)
= $T(\mathbf{x})$.

 \Box

 \Box

Consequence: If we know $T(\mathbf{e}_1), T(\mathbf{e}_2), \ldots, T(\mathbf{e}_n)$, we know $T(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.

Linear transformations and matrix multiplication:

Lemma [2.30](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#lem.2.30): Let $T_A : \mathbb{R}^n \to \mathbb{R}^a$ and $T_B : \mathbb{R}^b \to \mathbb{R}^n$ be two linear transformations. Then

$$
T_A(T_B(\mathbf{x})) = T_{AB}(\mathbf{x}).
$$

Proof.

$$
T_A(T_B(\mathbf{x})) = T_A(B\mathbf{x}) = A(B\mathbf{x}) = (AB)\mathbf{x} = T_{AB}(\mathbf{x}).
$$

Can be used to prove generalized associativity, for example $(AB)(CD) = A((BC)D)$:

$$
T_{(AB)(CD)}(\mathbf{x}) = T_{AB}(T_{CD}(\mathbf{x})) = T_{AB}(T_C(T_D(\mathbf{x}))) = T_A(T_B(T_C(T_D(\mathbf{x}))))
$$

\n
$$
T_{A((BC)D)}(\mathbf{x}) = T_A(T_{(BC)D}(\mathbf{x})) = T_A(T_{BC}(T_D(\mathbf{x}))) = T_A(T_B(T_C(T_D(\mathbf{x})))
$$

Same functions \Rightarrow same matrices (Theorem [2.29\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#thm.2.29).

Systems of linear equations (Section [3.1\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#section.3.1)

$$
D = 2S \nD = C + 3 \nD + S + C = 17
$$
\n
$$
x_1 - 2x_2 = 0 \n x_1 - x_3 = 3 \n x_1 + x_2 + x_3 = 17
$$

children's age puzzle (Section [0.3\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#section.0.3)

standard form
$$
(x_1 = D, x_2 = S, x_3 = C)
$$

Definition [3.1](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#dfn.3.1): A *system of linear equations* in m equations and n variables x_1, x_2, \ldots, x_n is of the form

$$
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2
$$

\n
$$
\vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m,
$$

The a_{ij} and b_i : known real numbers The x_i : unknown real numbers (to be computed) Matrix-vector form:

$$
A\mathbf{x} = \mathbf{b} : \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.
$$

$$
A, m \times n \longrightarrow
$$

A: *coefficient matrix* x: *vector of variables* b: *right-hand side* Solving the system: compute $x \in \mathbb{R}^n$ such that $A x = b$. Children's age puzzle:

$$
\underbrace{\begin{bmatrix} 1 & -2 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} 0 \\ 3 \\ 17 \end{bmatrix}}_{\mathbf{b}}.
$$

Observation [3.2](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#obs.3.2): Let A be an $m \times n$ matrix. The columns of A are linearly independent if and only if the system $Ax = 0$ has a unique solution, $x = 0$.

Proof. Unique solution \Leftrightarrow 0 can only be written as a trivial linear combination of the colums \Leftrightarrow columns are linearly independent (Lemma [1.19\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#lem.1.19). \Box

The PageRank algorithm: works on *link graph* (circles: web pages, arrows: links)

Which page is most relevant?

Old school measure: number of *citations* (links to the page): page 2 (4 citations) wins.

PageRank principles:

- Citation from a relevant page counts more.
- Citation from a page that cites many pages counts less.

 \rightarrow relevance: sum of relevances of citing pages, divided by number of pages cited:

$$
x_2 = \frac{x_1}{2} + x_4 + x_5 + \frac{x_6}{4}
$$
 (same for the other 5 pages)

System of 6 linear equations in 6 variables! But with useless solution 0. Fix: use *damping factor* d close to 1 (for example, $d = 7/8$):

$$
x_2 = (1 - d) + d\left(\frac{x_1}{2} + x_4 + x_5 + \frac{x_6}{4}\right)
$$

Unique solution (rounded): page 3 (rank 1.7307) wins.

$$
x_1 = 0.31797, x_2 = 1.6761, x_3 = 1.7307, x_4 = 0.31797, x_5 = 1.0751, x_6 = 0.88217.
$$

Computer vectors and matrices: how to store a system of linear equations? $\mathbf{b} \in \mathbb{R}^m$: array b with entries $\mathbf{b}[0], \mathbf{b}[1], \ldots, \mathbf{b}[m-1]$.

$$
b = \begin{bmatrix} b[0] \\ b[1] \\ \vdots \\ b[m-1] \end{bmatrix}
$$
 (computer vector)

Array indices start from 0, not from 1!

 $A \in \mathbb{R}^{m \times n}$: array A with m entries A[0], A[1], . . . , A[m $-$ 1]. Each A[i]: array with n entries.

$$
A = \begin{bmatrix} - & A[0] & - \\ - & A[1] & - \\ & \vdots & \\ - & A[m-1] & - \end{bmatrix} \quad \text{(computer matrix in row notation)}
$$
\n
$$
A[i] = [A[i][0] \quad A[i][1] \quad \cdots \quad A[i][n-1]] \quad \text{(computer row vector)}
$$

 $A[i][j]$ is the entry of A in row *i* and column *j* (both counting from 0).