
Lecture plan Linear Algebra (401-0131-00L, HS24), ETH Zürich
Numbering of Sections, Definitions, Figures, etc. as in the Lecture Notes

Week 5

LU and LUP decomposition (Section 3.4)

LU decomposition:
Gauss elimination, 3× 3, no row exchanges:1 0 0

0 1 0
0 −c32 1


︸ ︷︷ ︸
subtract c32·(row 2)

from (row 3)

 1 0 0
0 1 0

−c31 0 1


︸ ︷︷ ︸
subtract c31·(row 1)

from (row 3)

 1 0 0
−c21 1 0

0 0 1


︸ ︷︷ ︸
subtract c21·(row 1)

from (row 2)

A = U.

Multiplying it out:

L−1, complicated︷ ︸︸ ︷ 1 0 0
−c21 1 0

c32c21 − c31 −c32 1

A = U

↓ (take inverse) 1 0 0
c21 1 0
c31 c32 1


︸ ︷︷ ︸

L, simple

⇒ A = LU

Always works: focus on A→ U (Table 3.6 without lines 12 and 22 for b)
Theorem 3.13: Let A be an m ×m matrix on which Gauss elimination succeeds without
row exchanges, resulting in an upper triangular matrix U . Let cij be the multiple of row j
that we subtract from row i > j when we eliminate in column j. Then A = LU where

L =


1
c21 1
... . . .

cm1 · · · cm,m−1 1

 .

L is lower triangular with 1’s on the diagonal.
L is computed “on the side”: time still O(m3).
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Proof. Look at a fixed row i. Whenever we change row i, we subtract cij · (row j) from it,
for some previous row j. At this point, row j is “finalized”.

u11 · · · ← finalized (in U )
0 u22 · · · ← finalized (in U )

0 0
. . . ...

row j 0 0 · · · ujj · · · ujm ← finalized (in U )
...

row i 0 0 · · · ⋆ij · · · ⋆im ← now subtract cij · (row j)
What happens to row i?

(row i) in A initially
− ci1 · (row 1) in U step 1
− ci2 · (row 2) in U step 2
...
− ci,i−1 · (row i− 1) in U step i− 1
= (row i) in U finalized.

Move all ” − · · · ” to the other side: (row i) in A is a linear combination of the first i rows
of U . Matrix notation:

(row i) of A =
[
ci1 ci2 · · · ci,i−1 1 0 · · · 0

]︸ ︷︷ ︸
row vector

U.

For all rows of A:

A =


1
c21 1
... . . .

cm1 · · · cm,m−1 1


︸ ︷︷ ︸

L

U.

Solving Ax = b from A = LU :

Ax = b : L Ux︸︷︷︸
y

= b.

Solve Ly = b for y (forward substitution): O(m2)
Solve Ux = y for x (back substitution): O(m2)

What if row exchanges are needed?
LU-decomposition may not exist:[

0 1
1 0

]
︸ ︷︷ ︸

A

=

[
ℓ11 0
ℓ21 ℓ22

]
︸ ︷︷ ︸

L

[
u11 u12

0 u22

]
︸ ︷︷ ︸

U

has no solution L,U.
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LUP decomposition: Official correctness proof of Gauss elimination (Section 3.4.3).
Theorem 3.18: Let A be an m × m matrix with linearly independent columns, m ≥ 1.
There exist three m×m matrices P,L, U such that

PA = LU,

where P is a permutation matrix, L a lower triangular matrix with 1’s on the diagonal,
and U an upper triangular matrix with nonzero diagonal entries.
Permutation matrix: matrix of linear transformation that reorders the entries of v0 1 0

0 0 1
1 0 0

v1v2
v3

 =

v2v3
v1

 .

L, P are computed “on the side”: time still O(m3).
Ax = b solved in time O(m2) for every b.

Gauss-Jordan elimination (Section 3.5)

Ax = b→ R0x = c with R0 in row echelon form; works for every system!

1
1

1
1

0
0
0

0
0
0

j1 j2 j3 j4

1
2
3
4
5
6

REF(2, 3, 6, 8), r = 4

Definition 3.19: Let R = [rij]
m n
i=1,j=1 be an m × n matrix. R is in row echelon form (REF) if

the following holds: There exist r ≤ m column indices 1 ≤ j1 < j2 < · · · < jr ≤ n such
that:

(i) For i = 1, 2, . . . , r, we have riji = 1 (1’s in gray).

(ii) For all i, j, we have rij = 0 whenever i > r (completely white rows) or j < ji
(partially white rows) or j = jk (0’s in gray) for some k > i.

If r = m, R is in reduced row echelon form (RREF) (no completely white rows).
Precise description: REF(j1, j2, . . . , jr) or RREF(j1, j2, . . . , jm).

Columns j1, j2, . . . , jr: the first r standard unit vectors
I (m×m): in RREF(1, 2, . . . ,m)

0 (m×m): in RREF() (r = 0)

Observation 3.20: A matrix R in REF(j1, j2, . . . , jr) has rank r.

Proof. Columns j1, j2, . . . , jr are the independent ones.
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Direct solution: if A in REF(j1, j2, . . . , jr) (rows i > r are zero)
If bi ̸= 0 for some i > m: no solution! Otherwise:

xj =

{
bi, if j = ji
0, otherwise. (canonical solution)

1
1

1
1

0
0
0

0
0
0

j1 j2 j3 j4

1
2
3
4
5
6

b1
b2
b3
b4
0
0

0

0
0

0

0
0

b1
b2

b3

b4

=

A

x

b

←
← if ̸= 0 here, no solution

Elimination: if A is not in REF

• Ax = b→ R0x = c (same solutions, R0 in REF) focus on A→ R0

• For R0x = c, apply direct solution

Like Gauss, except. . .

. . . turn pivots into 1: r counts “downward steps” so far
↑
↑

↑
↑

A =

2 4 2 2 −2
6 12 6 7 1
4 8 2 2 6

 (r = 0)

divide (row 1) by 2: ↓1 2 1 1 −1
6 12 6 7 1
4 8 2 2 6


subtract 6·(row 1) from (row 2): ↓1 2 1 1 −1

0 0 0 1 7
4 8 2 2 6


subtract 4·(row 1) from (row 3): ↓1 2 1 1 −1

0 0 0 1 7
0 0 −2 −2 10


downward step made, next column! ↓1 2 1 1 −1

0 0 0 1 7
0 0 −2 −2 10

 (r = 1)
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. . . embrace ugly case: no downward step, next column!

1 2 1 1 −1
0 0 0 1 7
0 0 −2 −2 10

 (r = 1)

exchange (row 2) and (row 3): ↓1 2 1 1 −1
0 0 −2 −2 10
0 0 0 1 7


divide (row 2) by −2: ↓1 2 1 1 −1

0 0 1 1 −5
0 0 0 1 7


. . . also eliminate above the pivot: 1 2 1 1 −1

0 0 1 1 −5
0 0 0 1 7


subtract 1·(row 2) from (row 1): ↓1 2 0 0 4

0 0 1 1 −5
0 0 0 1 7


downward step made, next column! ↓1 2 0 0 4

0 0 1 1 −5
0 0 0 1 7

 (r = 2)

subtract 1·(row 3) from (row 2): ↓1 2 0 0 4
0 0 1 0 −12
0 0 0 1 7


m downward steps made, done! ↓

R0 =

1 2 0 0 4
0 0 1 0 −12
0 0 0 1 7

 (r = 3)

Theorem 3.21: Let A be an m× n matrix. There exists an invertible m×m matrix M such
that R0 = MA is in REF.
M : product of (invertible) row operation matrices:

• row exchanges

• row divisions

• row subtractions (below and above the pivot)
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Solving Ax = b:

• A→ R0 = MA,b→ c = Mb (like in Gauss, apply row operations also to b)

• Ax = b and R0x = c have the same solutions (M is “undoable”, proof of Lemma 3.3
applies).

• Use direct solution on R0x = c.

Lemma 3.22: Let A be an m × n matrix, M an invertible m ×m matrix, and R0 = MA in
REF(j1, j2, . . . , jr). Then A has independent columns j1, j2, . . . , jr.

Proof.

Column j of A
R0

is dependent⇔ there is x in Rn: Ax = 0
R0x = 0

, xj = −1, xk = 0 for k > j︸ ︷︷ ︸
column j is linear combination of previous ones

x works for A ⇔ x works for R0, since Ax = 0 and MAx = 0 have the same solutions
(proof of Lemma 3.3 with b = 0). A and R0 have the same (in)dependent columns.
R0 has independent columns j1, j2, . . . , jr (Observation 3.20). Therefore, A has the same.

If A is m×m, invertible:
all columns are independent⇒ R0 = MA in RREF(1, 2, . . . ,m)⇒ R0 = I ⇒M = A−1.

Computing the CR decomposition:
Recall Theorem 2.23:

A = C︸︷︷︸
m×r

R︸︷︷︸
r×n

.

C submatrix of independent columns; R how to combine them to get all columns.
Theorem 3.24: Let A be an m×n matrix, A = CR (according to Theorem 2.23), A→ R0 =
MA in REF(j1, j2, . . . , jr). Then

• R = the first r rows of R0 (the nonzero rows of R0).

• C = columns j1, j2, . . . , jr of A (the independent columns of A)

Proof. R0 = M CR︸︷︷︸
A

.

• C has columns j1, j2, . . . , jr of A (the independent ones by Lemma 3.22).

• MC has columns j1, j2, . . . , jr of R0 = MA: the unit vectors e1, e2, . . . , er.
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R0 = MCR =


I︸︷︷︸

r×r

0︸︷︷︸
(m−r)×r


︸ ︷︷ ︸

MC

R =


R︸︷︷︸
r×n

0︸︷︷︸
(m−r)×n


︸ ︷︷ ︸

R0

.

Verify this on 1 2 0 3
2 4 1 4
3 6 2 5


︸ ︷︷ ︸

A

=

1 0
2 1
3 2


︸ ︷︷ ︸

C

[
1 2 0 3
0 0 1 −2

]
︸ ︷︷ ︸

R

from Section 2.2.3 by doing Gauss-Jordan on A!
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