Lecture plan Linear Algebra (401-0131-00L, HS24), ETH Zürich Numbering of Sections, Definitions, Figures, etc. as in the [Lecture Notes](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf)

Week 5

LU and LUP decomposition (Section [3.4\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#section.3.4)

LU decomposition:

Gauss elimination, 3×3 , no row exchanges:

$$
\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & -c_{32} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ -c_{31} & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \ -c_{21} & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} A = U.
$$
\nsubtract c_{32} (row 2)
\nfrom (row 3)
\nfrom (row 3)
\nfrom (row 3)
\nfrom (row 3)
\nfrom (row 2)

Multiplying it out:

$$
L^{-1}
$$
, complicated
\n
$$
\begin{bmatrix}\n1 & 0 & 0 \\
-c_{21} & 1 & 0 \\
c_{32}c_{21} - c_{31} & -c_{32} & 1\n\end{bmatrix}
$$
\n
$$
A = U
$$
\n
$$
\downarrow
$$
 (take inverse)
\n
$$
\begin{bmatrix}\n1 & 0 & 0 \\
c_{21} & 1 & 0 \\
c_{31} & c_{32} & 1\n\end{bmatrix} \Rightarrow A = LU
$$
\n
$$
\Rightarrow A = LU
$$

Always works: focus on $A \rightarrow U$ (Table [3.6](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#table.3.6) without lines 12 and 22 for b)

Theorem [3.13](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#thm.3.13): Let A be an $m \times m$ matrix on which Gauss elimination succeeds without row exchanges, resulting in an upper triangular matrix U . Let c_{ij} be the multiple of row j that we subtract from row $i > j$ when we eliminate in column j. Then $A = LU$ where

$$
L = \begin{bmatrix} 1 & & & \\ c_{21} & 1 & & \\ \vdots & & \ddots & \\ c_{m1} & \cdots & c_{m,m-1} & 1 \end{bmatrix}.
$$

L is lower triangular with 1's on the diagonal.

L is computed "on the side": time still $O(m^3)$.

Proof. Look at a fixed row *i*. Whenever we change row *i*, we subtract $c_{ij} \cdot (\text{row } j)$ from it, for some previous row j . At this point, row j is "finalized".

> $u_{11} \quad \cdots \qquad \qquad \mid \leftarrow \text{finalized (in } U)$ 0 u_{22} \cdots \leftarrow finalized (in U) $0 \quad 0 \quad \therefore$ row $j \begin{array}{|l} \mid 0 \quad 0 \quad \cdots \quad \mathbf{u_{jj}} \quad \cdots \quad u_{jm} \mid \leftarrow \text{finalized (in } U) \end{array}$. . . row $i \left[\begin{array}{cccc} 0 & 0 & \cdots & \star_{ij} & \cdots & \star_{im} \end{array} \right] \leftarrow \text{now subtract } c_{ij} \cdot (\text{row } j)$

What happens to row i?

$$
\begin{array}{cccc}\n & & \text{(row } i) \text{ in } A & \text{ initially} \\
- & c_{i1} & \text{(row 1) in } U & \text{step 1} \\
- & c_{i2} & \text{(row 2) in } U & \text{step 2} \\
\vdots & & & \text{(row } i-1) \text{ in } U & \text{step } i-1 \\
= & & \text{(row } i) \text{ in } U & \text{finalized.} \n\end{array}
$$

Move all " $-\cdots$ " to the other side: (row i) in A is a linear combination of the first i rows of U. Matrix notation:

$$
\text{For all rows of } A: \begin{align*}\n\text{for all rows of } A: \\
A = \begin{bmatrix} c_{i1} & c_{i2} & \cdots & c_{i,i-1} & 1 & 0 & \cdots & 0 \\ \text{row vector} & & & \\
\vdots & & & \ddots & \\
c_{m1} & \cdots & c_{m,m-1} & 1\n\end{bmatrix} U.\n\end{align*}
$$

Solving $Ax = b$ **from** $A = LU$:

$$
A\mathbf{x} = \mathbf{b} : L\underbrace{U\mathbf{x}}_{\mathbf{y}} = \mathbf{b}.
$$

Solve $Ly = b$ for y (*forward substitution*): $O(m^2)$ Solve U **x** = **y** for **x** (back substitution): $O(m^2)$

What if row exchanges are needed?

LU-decomposition may not exist:

$$
\underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_A = \underbrace{\begin{bmatrix} \ell_{11} & 0 \\ \ell_{21} & \ell_{22} \end{bmatrix}}_L \underbrace{\begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}}_U
$$
 has no solution *L*, *U*.

 \Box

LUP decomposition: Official correctness proof of Gauss elimination (Section [3.4.3\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#subsection.3.4.3). **Theorem [3.18](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#thm.3.18)**: Let A be an $m \times m$ matrix with linearly independent columns, $m \geq 1$. There exist three $m \times m$ matrices P, L, U such that

$$
PA = LU,
$$

where P is a permutation matrix, L a lower triangular matrix with 1's on the diagonal, and U an upper triangular matrix with nonzero diagonal entries.

Permutation matrix: matrix of linear transformation that reorders the entries of v

L, P are computed "on the side": time still $O(m^3)$. A **x** = **b** solved in time $O(m^2)$ for every **b**.

Gauss-Jordan elimination (Section [3.5\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#section.3.5)

$$
A
$$
x = **b** \rightarrow R_0 **x** = **c** with R_0 in

 $i_1 i_2 \qquad i_3 \qquad i_4$

row echelon form; works for *every* system!

Definition [3.19](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#dfn.3.19): Let $R = [r_{ij}]_{i=1,j=1}^m$ be an $m \times n$ matrix. R is in *row echelon form* (REF) if the following holds: There exist $r\leq m$ column indices $1\leq j_1 < j_2 < \cdots < j_r \leq n$ such that:

- (i) For $i = 1, 2, ..., r$, we have $r_{ij} = 1$ (1's in gray).
- (ii) For all i, j, we have $r_{ij} = 0$ whenever $i > r$ (completely white rows) or $j < j_i$ (partially white rows) or $j = j_k$ (0's in gray) for some $k > i$.

If $r = m$, R is in *reduced row echelon form* (RREF) (no completely white rows).

Precise description: $REF(j_1, j_2, \ldots, j_r)$ or $RREF(j_1, j_2, \ldots, j_m)$.

Columns j_1, j_2, \ldots, j_r : the first r standard unit vectors

I $(m \times m)$: in RREF $(1, 2, \ldots, m)$

 $0 \ (m \times m)$: in RREF() $(r = 0)$

Observation [3.20](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#obs.3.20): A matrix R in $REF(j_1, j_2, \ldots, j_r)$ has rank r.

Proof. Columns j_1, j_2, \ldots, j_r are the independent ones.

 \Box

Direct solution: if A in $REF(j_1, j_2, \ldots, j_r)$ (rows $i > r$ are zero) If $b_i \neq 0$ for some $i > m$: no solution! Otherwise:

Elimination: if A is not in REF

• $A\mathbf{x} = \mathbf{b} \rightarrow R_0\mathbf{x} = \mathbf{c}$ (same solutions, R_0 in REF) focus on $A \rightarrow R_0$

• For R_0 **x** = **c**, apply direct solution

Like Gauss, except. . .

. . . embrace ugly case: no downward step, next column!

Theorem [3.21](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#thm.3.21): Let A be an $m \times n$ matrix. There exists an invertible $m \times m$ matrix M such that $R_0 = MA$ is in REF.

M: product of (invertible) row operation matrices:

- row exchanges
- row divisions
- row subtractions (below and above the pivot)

Solving $Ax = b$:

- $A \rightarrow R_0 = MA$, $\mathbf{b} \rightarrow \mathbf{c} = Mb$ (like in Gauss, apply row operations also to b)
- $A**x** = **b**$ and $R_0**x** = **c**$ have the same solutions (*M* is "undoable", proof of Lemma [3.3](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#lem.3.3) applies).
- Use direct solution on R_0 **x** = **c**.

Lemma [3.22](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#lem.3.22): Let A be an $m \times n$ matrix, M an invertible $m \times m$ matrix, and $R_0 = MA$ in $REF(j_1, j_2, \ldots, j_r)$. Then A has independent columns j_1, j_2, \ldots, j_r .

Proof.

Column j of $\begin{array}{cc} A & \text{is dependent} \Leftrightarrow \text{there is x in } \mathbb{R}^n: \end{array}$ $A\mathbf{x} = \mathbf{0}$ R_0 **x** = **0**, x_j = -1, x_k = 0 for $k > j$

 ${column j is linear combination of previous ones}$ x works for $A \Leftrightarrow$ x works for R_0 , since A x = 0 and $M A$ x = 0 have the same solutions (proof of Lemma [3.3](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#lem.3.3) with $\mathbf{b} = \mathbf{0}$). A and R_0 have the same (in)dependent columns.

 R_0 has independent columns j_1, j_2, \ldots, j_r (Observation [3.20\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#obs.3.20). Therefore, A has the same. \Box

If A is $m \times m$, invertible:

all columns are independent $\Rightarrow R_0 = MA$ in $\text{RREF}(1,2,\ldots,m) \Rightarrow R_0 = I \Rightarrow M = A^{-1}.$

Computing the CR decomposition:

Recall Theorem [2.23:](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#thm.2.23)

$$
A = \underbrace{C}_{m \times r} \underbrace{R}_{r \times n}.
$$

 C submatrix of independent columns; R how to combine them to get all columns. **Theorem [3.24](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#thm.3.24)**: Let A be an $m \times n$ matrix, $A = CR$ (according to Theorem [2.23\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#thm.2.23), $A \rightarrow R_0 =$ MA in $REF(j_1, j_2, \ldots, j_r)$. Then

- $R =$ the first r rows of R_0 (the nonzero rows of R_0).
- $C = \text{columns } j_1, j_2, \ldots, j_r \text{ of } A \text{ (the independent columns of } A\text{)}$

Proof. $R_0 = M_{CR}$ ${\gamma}$.

- *C* has columns j_1, j_2, \ldots, j_r of *A* (the independent ones by Lemma [3.22\)](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#lem.3.22).
- *MC* has columns j_1, j_2, \ldots, j_r of $R_0 = MA$: the unit vectors e_1, e_2, \ldots, e_r .

$$
R_0 = MCR = \underbrace{\begin{bmatrix} I \\ \frac{r \times r}{0} \\ 0 \end{bmatrix}}_{MC} R = \underbrace{\begin{bmatrix} R \\ \frac{r \times n}{0} \\ 0 \end{bmatrix}}_{R_0}.
$$

Verify this on

$$
\underbrace{\begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 1 & 4 \\ 3 & 6 & 2 & 5 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}}_{R}
$$

from Section [2.2.3](https://ti.inf.ethz.ch/ew/courses/LA24/notes_part_I.pdf#subsection.2.2.3) by doing Gauss-Jordan on A!

 \Box