Lecture plan Linear Algebra (401-0131-00L, HS24), ETH Zürich Numbering of Sections, Definitions, Figures, etc. as in the Lecture Notes

Week 5

LU and LUP decomposition (Section 3.4)

LU decomposition:

Gauss elimination, 3×3 , no row exchanges:

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -c_{32} & 1 \end{bmatrix}}_{\text{subtract } c_{32} \cdot (\text{row } 2)} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -c_{31} & 0 & 1 \end{bmatrix}}_{\text{from (row 3)}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -c_{21} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\text{subtract } c_{21} \cdot (\text{row 1})} A = U$$

Multiplying it out:

$$\overbrace{\begin{array}{cccc} L^{-1}, \text{ complicated} \\ \hline 1 & 0 & 0 \\ -c_{21} & 1 & 0 \\ c_{32}c_{21} - c_{31} & -c_{32} & 1 \\ \end{array}}^{L - 1, \text{ complicated}} A = U$$

$$\downarrow (\text{take inverse})$$

$$\overbrace{\begin{array}{cccc} 1 & 0 & 0 \\ c_{21} & 1 & 0 \\ c_{31} & c_{32} & 1 \\ \end{array}}_{L, \text{ simple}} \Rightarrow A = LU$$

Always works: focus on $A \rightarrow U$ (Table 3.6 without lines 12 and 22 for b)

Theorem 3.13: Let *A* be an $m \times m$ matrix on which Gauss elimination succeeds without row exchanges, resulting in an upper triangular matrix *U*. Let c_{ij} be the multiple of row *j* that we subtract from row i > j when we eliminate in column *j*. Then A = LU where

$$L = \begin{bmatrix} 1 & & & \\ c_{21} & 1 & & \\ \vdots & & \ddots & \\ c_{m1} & \cdots & c_{m,m-1} & 1 \end{bmatrix}$$

L is lower triangular with 1's on the diagonal.

L is computed "on the side": time still $O(m^3)$.

Proof. Look at a fixed row *i*. Whenever we change row *i*, we subtract $c_{ij} \cdot (\text{row } j)$ from it, for some previous row *j*. At this point, row *j* is "finalized".

What happens to row *i*?

Move all " $-\cdots$ " to the other side: (row *i*) in *A* is a linear combination of the first *i* rows of *U*. Matrix notation:

(row i) of
$$A = \underbrace{\begin{bmatrix} c_{i1} & c_{i2} & \cdots & c_{i,i-1} & 1 & 0 & \cdots & 0 \end{bmatrix}}_{\text{row vector}} U.$$

For all rows of A :
$$A = \underbrace{\begin{bmatrix} 1 & & & \\ c_{21} & 1 & & \\ \vdots & & \ddots & \\ c_{m1} & \cdots & c_{m,m-1} & 1 \end{bmatrix}}_{L} U.$$

Solving $A\mathbf{x} = \mathbf{b}$ from A = LU:

$$A\mathbf{x} = \mathbf{b}: \quad L \underbrace{U\mathbf{x}}_{\mathbf{y}} = \mathbf{b}.$$

Solve $L\mathbf{y} = \mathbf{b}$ for \mathbf{y} (forward substitution): $O(m^2)$ Solve $U\mathbf{x} = \mathbf{y}$ for \mathbf{x} (back substitution): $O(m^2)$

What if row exchanges are needed?

LU-decomposition may not exist:

$$\underbrace{\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} \ell_{11} & 0\\ \ell_{21} & \ell_{22} \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_{11} & u_{12}\\ 0 & u_{22} \end{bmatrix}}_{U} \text{ has no solution } L, U.$$

LUP decomposition: Official correctness proof of Gauss elimination (Section 3.4.3). **Theorem 3.18**: Let *A* be an $m \times m$ matrix with linearly independent columns, $m \ge 1$. There exist three $m \times m$ matrices *P*, *L*, *U* such that

$$PA = LU$$
,

where P is a permutation matrix, L a lower triangular matrix with 1's on the diagonal, and U an upper triangular matrix with nonzero diagonal entries.

Permutation matrix: matrix of linear transformation that reorders the entries of v

[0]	1	0	v_1		v_2	
0	0	1	v_2	=	v_3	
1	0	0	v_3		v_1	

L, *P* are computed "on the side": time still $O(m^3)$. $A\mathbf{x} = \mathbf{b}$ solved in time $O(m^2)$ for every **b**.

Gauss-Jordan elimination (Section 3.5)

$$A\mathbf{x} = \mathbf{b} \rightarrow R_0 \mathbf{x} = \mathbf{c}$$
 with R_0 in

in roy

 $\begin{array}{c}
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6
 \end{array}$

row echelon form;

works for *every* system!

	\mathcal{J}_1	\mathcal{J}_2			j_3		\mathcal{J}_4		
	1	0			0		0		
		1			0		0		
					1		0		
							1		
R	E	F(2,	3,	6,	8)	,r	=	4

Definition 3.19: Let $R = [r_{ij}]_{i=1,j=1}^{m}$ be an $m \times n$ matrix. R is in *row echelon form* (REF) if the following holds: There exist $r \leq m$ column indices $1 \leq j_1 < j_2 < \cdots < j_r \leq n$ such that:

- (i) For i = 1, 2, ..., r, we have $r_{ij_i} = 1$ (1's in gray).
- (ii) For all *i*, *j*, we have $r_{ij} = 0$ whenever i > r (completely white rows) or $j < j_i$ (partially white rows) or $j = j_k$ (0's in gray) for some k > i.

If r = m, R is in reduced row echelon form (RREF) (no completely white rows).

Precise description: $\text{REF}(j_1, j_2, \dots, j_r)$ or $\text{RREF}(j_1, j_2, \dots, j_m)$.

Columns j_1, j_2, \ldots, j_r : the first *r* standard unit vectors

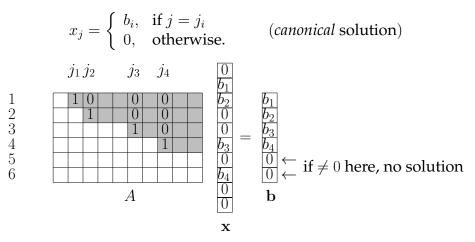
 $I (m \times m)$: in RREF $(1, 2, \ldots, m)$

0 ($m \times m$): in RREF() (r = 0)

Observation 3.20: A matrix *R* in $\text{REF}(j_1, j_2, \dots, j_r)$ has rank *r*.

Proof. Columns j_1, j_2, \ldots, j_r are the independent ones.

Direct solution: if *A* in REF $(j_1, j_2, ..., j_r)$ (rows i > r are zero) If $b_i \neq 0$ for some i > m: no solution! Otherwise:



Elimination: if *A* is not in REF

• $A\mathbf{x} = \mathbf{b} \rightarrow R_0 \mathbf{x} = \mathbf{c}$ (same solutions, R_0 in REF)

focus on
$$A \to R_0$$

• For $R_0 \mathbf{x} = \mathbf{c}$, apply direct solution

Like Gauss, except...

turn pivots into 1:	<i>r</i> counts "downward steps" so far \uparrow \uparrow \uparrow				
	A =	$\begin{bmatrix} 2 & 4 & 2 & 2 & -2 \\ 6 & 12 & 6 & 7 & 1 \\ 4 & 8 & 2 & 2 & 6 \end{bmatrix} (r=0)$			
divide (row 1) by 2:		$\begin{bmatrix} 1 & 2 & 1 & 1 & -1 \\ 6 & 12 & 6 & 7 & 1 \\ 4 & 8 & 2 & 2 & 6 \end{bmatrix}$			
subtract $6 \cdot (row 1)$ from (row 2)):	$\begin{bmatrix} 4 & 8 & 2 & 2 & 6 \end{bmatrix} \qquad \qquad$			
subtract $4 \cdot (row 1)$ from (row 3)).	$\begin{bmatrix} 0 & 0 & 0 & 1 & 7 \\ 4 & 8 & 2 & 2 & 6 \end{bmatrix}$			
Subtract 4 (row 1) from (row 5).	$\begin{bmatrix} 4 & 8 & 2 & 2 & 6 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 7 \\ 4 & 8 & 2 & 2 & 6 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & -2 & -2 & 10 \end{bmatrix}$			
downward step made, next co	lumn!	$\begin{bmatrix} 1 & 2 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & -2 & -2 & 10 \end{bmatrix} (r = 1)$			
		$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & -2 & 10 \end{bmatrix} $ (7 = 1)			

... embrace ugly case: no downward step, next column!

exchange (row 2) and (row 3): divide (row 2) by –2:	$\begin{bmatrix} 1 & 2 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & -2 & -2 & 10 \end{bmatrix} (r = 1)$ $\begin{bmatrix} 1 & 2 & 1 & 1 & -1 \\ 0 & 0 & -2 & -2 & 10 \\ 0 & 0 & 0 & 1 & 7 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 & -5 \\ 0 & 0 & 0 & 1 & 7 \end{bmatrix}$
also eliminate <i>above</i> the pivot:	
subtract 1·(row 2) from (row 1): downward step made, next column	$\begin{bmatrix} 1 & 2 & 0 & 0 & 4 \\ 0 & 0 & 1 & 1 & -5 \\ 0 & 0 & 0 & 1 & 7 \end{bmatrix} (r=2)$
subtract $1 \cdot (row 3)$ from (row 2):	
m downward steps made, done! R_0 =	$\begin{bmatrix} 0 & 0 & 0 & 1 & 7 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & -12 \\ 0 & 0 & 0 & 1 & 7 \end{bmatrix}$ $= \begin{bmatrix} 1 & 2 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & -12 \\ 0 & 0 & 0 & 1 & 7 \end{bmatrix} (r = 3)$

Theorem 3.21: Let *A* be an $m \times n$ matrix. There exists an invertible $m \times m$ matrix *M* such that $R_0 = MA$ is in REF.

M: product of (invertible) row operation matrices:

- row exchanges
- row divisions
- row subtractions (below and above the pivot)

Solving $A\mathbf{x} = \mathbf{b}$:

- $A \rightarrow R_0 = MA$, $\mathbf{b} \rightarrow \mathbf{c} = M\mathbf{b}$ (like in Gauss, apply row operations also to b)
- $A\mathbf{x} = \mathbf{b}$ and $R_0\mathbf{x} = \mathbf{c}$ have the same solutions (*M* is "undoable", proof of Lemma 3.3 applies).
- Use direct solution on $R_0 \mathbf{x} = \mathbf{c}$.

Lemma 3.22: Let *A* be an $m \times n$ matrix, *M* an invertible $m \times m$ matrix, and $R_0 = MA$ in $\text{REF}(j_1, j_2, \dots, j_r)$. Then *A* has independent columns j_1, j_2, \dots, j_r .

Proof.

Column *j* of $\begin{array}{c} A \\ R_0 \end{array}$ is dependent \Leftrightarrow there is **x** in \mathbb{R}^n : $\begin{array}{c} A\mathbf{x} = \mathbf{0} \\ R_0\mathbf{x} = \mathbf{0} \end{array}, x_j = -1, x_k = 0 \text{ for } k > j \end{array}$

column *j* is linear combination of previous ones **x** works for $A \Leftrightarrow \mathbf{x}$ works for R_0 , since $A\mathbf{x} = \mathbf{0}$ and $MA\mathbf{x} = \mathbf{0}$ have the same solutions (proof of Lemma 3.3 with $\mathbf{b} = \mathbf{0}$). *A* and R_0 have the same (in)dependent columns. R_0 has independent columns j_1, j_2, \ldots, j_r (Observation 3.20). Therefore, *A* has the same.

If *A* is $m \times m$, invertible:

all columns are independent $\Rightarrow R_0 = MA$ in RREF $(1, 2, \dots, m) \Rightarrow R_0 = I \Rightarrow M = A^{-1}$.

Computing the CR decomposition:

Recall Theorem 2.23:

$$A = \underbrace{C}_{m \times r} \underbrace{R}_{r \times n}.$$

C submatrix of independent columns; *R* how to combine them to get all columns.

Theorem 3.24: Let *A* be an $m \times n$ matrix, A = CR (according to Theorem 2.23), $A \to R_0 = MA$ in REF (j_1, j_2, \ldots, j_r) . Then

- R = the first r rows of R_0 (the nonzero rows of R_0).
- $C = \text{columns } j_1, j_2, \dots, j_r \text{ of } A$ (the independent columns of A)

Proof. $R_0 = M \underbrace{CR}_A$.

- *C* has columns j_1, j_2, \ldots, j_r of *A* (the independent ones by Lemma 3.22).
- *MC* has columns j_1, j_2, \ldots, j_r of $R_0 = MA$: the unit vectors $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_r$.

$$R_{0} = MCR = \underbrace{\begin{bmatrix} I \\ \hline r \times r \\ \hline 0 \\ (m-r) \times r \end{bmatrix}}_{MC} R = \underbrace{\begin{bmatrix} R \\ \hline r \times n \\ \hline 0 \\ (m-r) \times n \end{bmatrix}}_{R_{0}}.$$

Verify this on

$$\underbrace{\begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 1 & 4 \\ 3 & 6 & 2 & 5 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}}_{R}$$

from Section 2.2.3 by doing Gauss-Jordan on A!