Lecture plan Linear Algebra (401-0131-00L, HS24), ETH Ziirich
Numbering of Sections, Definitions, Figures, etc. as in the Lecture Notes

Week 5

LU and LUP decomposition (Section 3.4)

LU decomposition:
Gauss elimination, 3 x 3, no row exchanges:

1 00 1 00 1 00
0 10 010 —cop 1 0 A=U.
0—0321 —63101 0 01
subtract c3a-(row 2)  subtract c3;-(row 1)  subtract c21-(row 1)
from (row 3) from (row 3) from (row 2)
Multiplying it out:
L=, complicated
1 0 0
—C921 1 0l]A = U
C32Co1 — €31 —C32 1
1 (take inverse)
1 0 O
Coq 1 0 = A=LU
ca1 32 1
—————
L, simple

Always works: focus on A — U (Table 3.6 without lines 12 and 22 for b)

Theorem 3.13: Let A be an m x m matrix on which Gauss elimination succeeds without
row exchanges, resulting in an upper triangular matrix U. Let ¢;; be the multiple of row j
that we subtract from row ¢ > 7 when we eliminate in column j. Then A = LU where

Cm1 ' Cmym-—1 1

L is lower triangular with 1’s on the diagonal.
L is computed “on the side”: time still O(m?).
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Proof. Look at a fixed row i. Whenever we change row i, we subtract ¢;; - (row j) from it,
for some previous row j. At this point, row j is “finalized”.

uyp - + finalized (in U)
0 up --- + finalized (in U)
0 0 :
rowj | 0 0 -+ uy - ujy, | < finalized (in U)
rOw 1 0 0 -+ %y -+ %y | < now subtract ¢;; - (row 7)

What happens to row i?

(row i) in A initially
— ¢1 - (row 1)inU step 1
— cia - (row 2)in U step 2
Gi—1 - (@owi—1)inU stepi—1
= (row 7) in U finalized.
Move all 7 — - --” to the other side: (row ) in A is a linear combination of the first i rows
of U. Matrix notation:
(I'OW Z) of A= [Cil Cig  Cii-1 10 --- O] U.
row:lgctor
For all rows of A:
1
ao | b U
Cm1 Cm,mfl 1
b
O
Solving Ax = b from A = LU:
Ax=b: L Ux =b.
—~
y

Solve Ly = b for y (forward substitution): O(m?)
Solve Ux =y for x (back substitution): O(m?)

What if row exchanges are needed?
LU-decomposition may not exist:

0 1] _ |l Of funn we -
{1 0] = { lon 622} { 0 uﬂ] has no solution L, U.
S—— ~~

A L U

-~
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LUP decomposition: Official correctness proof of Gauss elimination (Section 3.4.3).
Theorem 3.18: Let A be an m x m matrix with linearly independent columns, m > 1.
There exist three m x m matrices P, L, U such that

PA=LU,

where P is a permutation matrix, L a lower triangular matrix with 1’s on the diagonal,
and U an upper triangular matrix with nonzero diagonal entries.

Permutation matrix: matrix of linear transformation that reorders the entries of v

010 (%] Vo
0 01 Vo | = |V3
1 00 U3 (%}

L, P are computed “on the side”: time still O(m?).
Ax = b solved in time O(m?) for every b.

Gauss-Jordan elimination (Section 3.5)

Ax = b — Ryx = cwith Ry in row echelon form; works for every system!

J172 J3 J4

1 170 0] |0

2 I 0] 10

3 1] |0

4 1

5

6

REF(2,3,6,8),r =4

Definition 3.19: Let R = [ry]Z, 2, be an m x n matrix. R is in row echelon form (REF) if
the following holds: There exist » < m column indices 1 < j; < j, < -+ < j, < nsuch
that:

(i) Fori=1,2,...,r, wehave r;;, = 1 (1's in gray).
(ii) For all ¢, 5, we have r;; = 0 whenever ¢ > r (completely white rows) or j < j;
(partially white rows) or j = j; (0’s in gray) for some k > 1.
If r = m, R is in reduced row echelon form (RREF) (no completely white rows).
Precise description: REF(jy, ja, . - ., jr) or RREF(j1, j2, . - ., Jm)-
Columns 71, jo, . . ., j: the first r standard unit vectors
I (m x m): in RREF(1,2,...,m)
0 (m x m): in RREF() (r = 0)
Observation 3.20: A matrix R in REF(jy, jo, . . ., j,) has rank r.

Proof. Columns ji, j, ..., j, are the independent ones. [
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Direct solution: if A in REF(j, j2, ..., ) (rows i > r are zero)
If b; # 0 for some ¢ > m: no solution! Otherwise:

0. otherwise (canonical solution)

Jije J3 U4 0]
b1
1 170 0] 10 | 1]
2 I 0 [0 0] Do
3 1] |0 0] _ D3
4 I bs| — b
=
%)3 é % : if # 0 here, no solution
0
A 0 b
X

Elimination: if A is notin REF

e Ax = b — Ryx = c (same solutions, R in REF) focuson A — Ry
* For Ryx = c, apply direct solution

Like Gauss, except...

. . 'z 7 T
...turn pivots into 1: r counts “downward steps” so far 1

divide (row 1) by 2: l
1 2 1 1 —1]
6 12 6 7 1
4 8 2 2 6
subtract 6-(row 1) from (row 2): {
[1 2 1 1 —1]
oo o 1 7
48 2 2 6]
subtract 4-(row 1) from (row 3): 1
[1 2 1 1 —1]
oo o 1 7
00 =2 -2 10|
downward step made, next column! l
12 1 1 —1]
00 0 1 7| (r=1)
00 —2 =2 10




..embrace ugly case: no downward step, next column!

exchange (row 2) and (row 3): ) 4
(12 1 1 —1]
00 —2 =2 10
oo o0 1 7

divide (row 2) by —2: l
1 2 1 1 —1]

..also eliminate above the pivot:

1 2 1 1 —1]
00 1 1 =5
oo o0 1 7
subtract 1-(row 2) from (row 1): i
(12 0 0 4]
0O 1 1 =5
oo o0 1 7
downward step made, next column! 1
(12 0 0 4]
00 1 1 =5| (r=2)
00 0 1 7]

subtract 1-(row 3) from (row 2): ] i i

m downward steps made, done! ) {

Ro= |00 1 0 —12| (r=3)
00 o0 1 7

Theorem 3.21: Let A be an m x n matrix. There exists an invertible m x m matrix M such
that Ry = M Aisin REF.

M: product of (invertible) row operation matrices:

¢ row exchanges
e row divisions

¢ row subtractions (below and above the pivot)
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Solving Ax = b:
* A— Ry= MA,b— c= Mb (like in Gauss, apply row operations also to b)

* Ax = b and Ryx = c have the same solutions (1 is “undoable”, proof of Lemma 3.3
applies).

e Use direct solution on Ryx = c.

Lemma 3.22: Let A be an m x n matrix, M an invertible m x m matrix, and Ry = M A in
REF (41, jo2, ..., Jr). Then A has independent columns ji, ja, - . . , jr-

Proof.
Ax =0

. A . o B B .
Column j of Ro is dependent < there is x in R™: Rox = 0 ,xj=—1,z,=0fork > j

J

column j is linear coml;ﬂmtion of previous ones
x works for A & x works for Ry, since Ax = 0 and M Ax = 0 have the same solutions
(proof of Lemma 3.3 with b = 0). A and R, have the same (in)dependent columns.

Ry has independent columns ji, jo, . . ., j, (Observation 3.20). Therefore, A has the same.
O

If Aism x m, invertible:
all columns are independent = Ry = M Ain RREF(1,2,...,m)= Ry=1= M = A~
Computing the CR decomposition:

Recall Theorem 2.23:

A= C R .
~—

mxXr rxXn
C submatrix of independent columns; 2 how to combine them to get all columns.

Theorem 3.24: Let A be an m x n matrix, A = CR (according to Theorem 2.23), A — Ry =
MA in REF (41,72, ..., Jr). Then

® R = the first r rows of R, (the nonzero rows of Ry).
¢ C = columns ji, jo, ..., jr of A (the independent columns of A)

Proof. Ry =M CR.
A

¢ (' has columns ji, ja, . . ., j» of A (the independent ones by Lemma 3.22).

e MC has columns j, ja, ..., j of Ry = M A: the unit vectors e, e,, ..., e,.
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1 R

~— ~—

Ry=MCR = 0 R = O”

—~— —~—
(m—r)xr (m—r)xn

MC Ro

Verify this on

1 2 0 3 10 120 3

2 41 4 =12 1 00 1 -9

36 25 3 2

from Section 2.2.3 by doing Gauss-Jordan on A!
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