
Lecture plan Linear Algebra (401-0131-00L, HS24), ETH Zürich
Numbering of Sections, Definitions, Figures, etc. as in the Lecture Notes

Week 6

Vector spaces (Section 4.1)

Question Answer (by example)
What is a vector? An element of some Rm

What is a mammal? A cat

Answers (by definition):

A mammal [. . . ] is a vertebrate animal of the class Mammalia. Mammals
are characterized by the presence of milk-producing mammary glands [. . . ]1

A vector is an element of a vector space. Vector spaces are characterized by
the presence of two operations on their elements: vector addition and scalar
multiplication.

Definition 4.1: A vector space is a triple (V,+, ·) where V is a set (the vectors), and

+ : V × V → V is a function (vector addition),
· : R× V → V is a function (scalar multiplication),

satisfying the following axioms (rules) for all u,v,w ∈ V and all λ, µ ∈ R.

1. v +w = w + v commutativity
2. u+ (v +w) = (u+ v) +w associativity
3. There is a vector 0 such that v + 0 = v for all v zero vector
4. There is a vector −v such that v + (−v) = 0 negative vector
5. 1 · v = v identity element
6. (λ·µ)v = λ · (µ · v) compatibility of · and · in R
7. λ(v +w) = λv + λw distributivity over +
8. (λ+µ)v = λv + µv distributivity over + in R

Observation 4.2: (Rm,+, ·), with “+” as in Definition 1.1 and “·” as in Definition 1.3, is a
vector space.
Definition 4.3: A polynomial p is a sum of the form

p =
m∑
i=0

pix
i,

for some m ∈ N. x: a variable; p0, p1, . . . , pm ∈ R the coefficients. Largest i such that pi ̸= 0:
degree of p. If all pi are 0: zero polynomial (degree −1).

1https://en.wikipedia.org/wiki/Mammal
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Examples:
p = 2x2 + x+ 1 : degree 2
q = 5x− 2 : degree 1

p+ q = 2x2 + 6x− 1 : “+”
5p = 10x2 + 5x+ 5 : “·”

Lemma 4.4: Let R[x] be the set of polynomials in one variable x. Then (R[x],+, ·) is a
vector space.

Proof. Check the obvious!

Lemma 4.5: LetRm×n be the set of m×n matrices, with A+B and λA defined in the usual
way (Definition 2.2). Then (Rm×n,+, ·) is a vector space.
Proving the obvious: vector spaces behave as expected (from Rm). Example:
Fact 4.6: Let (V,+, ·) be a vector space. V contains exactly one zero vector (a vector satis-
fying axiom 3).

Proof. Take two zero vectors 0 and 0′. Then

0′ = 0′ + 0 (axiom 3: 0 is a zero vector)
= 0+ 0′ (axiom 1: commutativity)
= 0 (axiom 3: 0′ is a zero vector)

Abuse of notation: (V,+, ·) → V

Subspaces:
Definition 4.8: Let V be a vector space. A nonempty subset U ⊆ V is a subspace of V if the
following two axioms hold for all v,w ∈ U and all λ ∈ R.

(i) v +w ∈ U ;

(ii) λv ∈ U .

We always have 0 ∈ U : take any u ∈ U , then 0u = 0 ∈ U by (ii). Needs “obvious”
Fact 4.10.
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subspaces of R3: a line a plane not a subspace (misses 0)
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Lemma 4.11: Let A be an m× n matrix. Then C(A) is a subspace of Rm.

Proof. Let v,w ∈ C(A): there exist x,y ∈ Rn such that v = Ax,w = Ay.

A(x+ y︸ ︷︷ ︸
∈Rn

) = Ax+ Ay = v +w ⇒ v +w ∈ C(A)

⇒ subspace axiom (i).
For λ ∈ R,

A( λx︸︷︷︸
∈Rn

) = λAx = λv ⇒ λv ∈ C(A)

⇒ subspace axiom (ii).

Lemma 4.12: Let V be a vector space and U a subspace. Then U is also a vector space
(with the same “+” and “·” as V ).

Proof. Check the (almost) obvious!

Subspaces of. . .
. . .R[x]:
The polynomials without constant term:

p =
m∑
i=0

pix
i where p0 = 0

The quadratic polynomials: lookalike of (isomorphic to) R3

p = p0 + p1x+ p2x
2

R[x] “contains” R1,R2,R3,R4, . . . (constant, linear, quadratic, cubic,. . . polynomials)!

. . .R2×2: isomorphic to R4

The symmetric matrices:
[
a b
b d

]
The matrices of trace 0:

[
a b
c d

]
, where a+ d = 0

Bases and dimension (Section 4.2)

Basis of V : linearly independent vectors whose span is V .
Formal definition uses set of vectors, not sequence (more practical; handles infinite case).
Definition 4.13: Let V be a vector space, G ⊆ V a (possibly infinite) subset of vectors. A
linear combination of G is a sum of the form∑

v∈F

λvv,

where F ⊆ G is a finite subset of G and λv ∈ R for all v ∈ F .
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Lemma 4.14: Let V be a vector space, G ⊆ V . Every linear combination of G ⊆ V is again
in V .

Proof. Linear combination (of finite F ⊆ G, in some order):
∑n

j=1 λjvj .

• wj := λjvj ∈ V for all j (function · : R× V → V )

• w1 +w2 ∈ V (function + : V × V → V )

• Repeat: (w1 +w2)︸ ︷︷ ︸
∈V

+w3 ∈ V , and so on, until w1 +w2 + · · ·+wn ∈ V

Why not infinite linear combinations? Previous lemma may fail (example: polynomials)!

G: the unit monomials: 1, x2, x3, . . .;
∑

p∈G 1p =
∑∞

i=0 x
i is not a polynomial.

Definition 4.15:
Let V be a vector space, G ⊆ V a subset of vectors.
Span(G): set of all linear combinations of G.
G is linearly independent if no vector v ∈ G is a linear combination of G \ {v}.

Definition 4.16: Let V be a vector space. B ⊆ V is a basis of V if B is linearly independent
and Span(B) = V .

Examples: (For linear independence, use private nonzero argument!)

vector space V basis B
Rm {e1, e2, . . . , em}

C(A) (subspace of Rm) independent columns of A

2× 2 symmetric matrices (subspace of R2×2)
{[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
R[x] (polynomials) {xi : i = 0, 1, . . .} (infinite set)

{0} (smallest vector space) (empty set)

There can be many bases:
Observation 4.18: Every set B = {v1,v2, . . . ,vm} of m linearly independent vectors is a
basis of Rm.

Proof. Still need Span(B) = Rm (every v ∈ Rm is a linear combination of B).
A: m×m matrix with columns v1,v2, . . . ,vm. Theorem 3.11: Ax = v has a unique solution

⇒ v =
m∑
j=1

xjvj︸ ︷︷ ︸
Ax
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Steinitz exchange lemma:
Lemma 4.19: Let V be a vector space, F ⊆ V finite and linearly independent, G ⊆ V finite
with Span(G) = V . Then

(i) |F | ≤ |G|.

(ii) There exists a subset E ⊆ G of size |G| − |F | such that Span(F ∪ E) = V .

Remark: |F ∪ E| ≤ |G| (E is allowed to contain elements of F ).

Proof. Induction on f = |F |.
f = 0 (F = ∅): (i) clear, for (ii), take E = G.
f > 0: choose u ∈ F , F ′ = F \ {u}, g = |G|. F ′ is also linearly independent.
Induction hypothesis:

(i) g ≥ f − 1.

(ii) There exists a subset E ′ ⊆ G of size g − (f − 1) with Span(F ′ ∪ E ′) = V .

u ∈ V = Span(F ′ ∪ E ′), u /∈ Span(F ′) (F linearly independent!)
⇓ ⇓
u =

∑
v∈F ′∪E′

λvv, λw ̸= 0 for some w ∈ E ′ (⋆)

⇒ |E ′| = g − (f − 1) ≥ 1 ⇔ g ≥ f ⇒ (i) for size f .
(ii) for size f : E = E ′ \ {w}; solve (⋆) for w:

w =
1

µw

(
u−

∑
v∈F ′∪E

λvv

)

Lemma 1.23:

⇒ w is linear combination of

F∪E︷ ︸︸ ︷
{u} ∪ F ′ ∪ E : Span(F ∪ E) = Span(

F∪E′︷ ︸︸ ︷
F ∪ E ∪ {w})

= =

(⋆) : u is linear combination of F ′ ∪ E ′ : Span(F ′ ∪ E ′)︸ ︷︷ ︸
V

= Span(F ′ ∪ E ′ ∪ {u}︸ ︷︷ ︸
F∪E′

)

Theorem 4.20: Let V be a vector space; B,B′ ⊆ V two finite bases of V . Then |B| = |B′|.

Proof. As bases, B and B′ are linearly independent, and Span(B) = Span(B′) = V .
Apply Steinitz exchange lemma (i):

• F = B,G = B′ ⇒ |B| ≤ |B′|
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• F = B′, G = B ⇒ |B′| ≤ |B|.

Also works without “finite” (case of polynomials). For infinite sets, |B| = |B′| means “the
same kind of infinity”.

Does every vector space have a basis? Yes! Here: the “finite” case.
Definition 4.21: A vector space V is called finitely generated if there exists a finite subset
G ⊆ V with Span(G) = V .
Rm: finitely generated (G = {e1, e2, . . . , em})
R[x]: not finitely generated
Theorem 4.22: Let V be a finitely generated vector space, G ⊆ V a finite subset with
Span(G) = V . Then V has a basis B ⊆ G.

Proof. If G is linearly independent, B = G is a basis by Definition 4.16. “line 1”
Otherwise, some v ∈ G is a linear combination of the other vectors ⇒
Span(G \ {v}) = Span(G) = V (Lemma 1.23).
Replace G with G \ {v} (still spans V ) and go to line 1.
G gets smaller in every step: this finally stops with B = G.

Dimension:
Definition 4.23: Let V be a finitely generated vector space. Then dim(V ), the dimension
of V , is the size of any basis B of V .
dim(Rm) = m (no surprise)
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dim = 0 dim = 1 dim = 2

Simplified basis criterion:
Lemma 4.24: Let V be a vector space with dim(V ) = d.

(i) Let F ⊆ V be a set of d linearly independent vectors. Then F is a basis of V .

(ii) Let G ⊆ V be a set of d vectors with Span(G) = V . Then G is a basis of V .
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Proof.
(i): Let G be a basis of V . Steinitz exchange Lemma 4.19 (ii) applies with F and G.
|F | = |G| = d ⇒ E = ∅. Span(F ) = Span(F ∪ E) = V ⇒ F is a basis.

(ii) We find a basis B ⊆ G of size d (Theorem 4.22). |B| = |G| ⇒ B = G ⇒ G is a basis.
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