Lecture plan Linear Algebra (401-0131-00L, HS24), ETH Zürich Numbering of Sections, Definitions, Figures, etc. as in the Lecture Notes

Week 6

Vector spaces (Section 4.1)

Question	Answer (by example)
What is a vector?	An element of some \mathbb{R}^m
What is a mammal?	A cat

Answers (by definition):

A *mammal* [...] is a vertebrate animal of the class **Mammalia**. Mammals are characterized by the presence of milk-producing mammary glands $[...]^1$

A vector is an element of a **vector space**. Vector spaces are characterized by the presence of two operations on their elements: vector addition and scalar multiplication.

Definition 4.1: A *vector space* is a triple $(V, +, \cdot)$ where V is a set (the vectors), and

+ : $V \times V \rightarrow V$ is a function (vector addition), · : $\mathbb{R} \times V \rightarrow V$ is a function (scalar multiplication),

satisfying the following *axioms* (rules) for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all $\lambda, \mu \in \mathbb{R}$.

1.	$\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$	commutativity
2.	$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$	associativity
3.	There is a vector 0 such that $\mathbf{v} + 0 = \mathbf{v}$ for all \mathbf{v}	zero vector
4.	There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = 0$	negative vector
5.	$1 \cdot \mathbf{v} = \mathbf{v}$	identity element
6.	$(\lambda \cdot \mu)\mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v})$	compatibility of \cdot and \cdot in \mathbb{R}
7.	$\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$	distributivity over +
8.	$(\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}$	distributivity over $+$ in \mathbb{R}

Observation 4.2: $(\mathbb{R}^m, +, \cdot)$, with "+" as in Definition 1.1 and " \cdot " as in Definition 1.3, is a vector space.

Definition 4.3: A polynomial p is a sum of the form

$$\mathbf{p} = \sum_{i=0}^{m} p_i x^i,$$

for some $m \in \mathbb{N}$. *x*: a variable; $p_0, p_1, \ldots, p_m \in \mathbb{R}$ the *coefficients*. Largest *i* such that $p_i \neq 0$: *degree* of **p**. If all p_i are 0: *zero polynomial* (degree -1).

¹https://en.wikipedia.org/wiki/Mammal

Examples:

$$\mathbf{p} = 2x^2 + x + 1 : \text{ degree } 2$$

$$\mathbf{q} = 5x - 2 : \text{ degree } 1$$

$$\mathbf{p} + \mathbf{q} = 2x^2 + 6x - 1 : "+"$$

$$5\mathbf{p} = 10x^2 + 5x + 5 : "\cdot"$$

Lemma 4.4: Let $\mathbb{R}[x]$ be the set of polynomials in one variable x. Then $(\mathbb{R}[x], +, \cdot)$ is a vector space.

Proof. Check the obvious!

Lemma 4.5: Let $\mathbb{R}^{m \times n}$ be the set of $m \times n$ matrices, with A + B and λA defined in the usual way (Definition 2.2). Then $(\mathbb{R}^{m \times n}, +, \cdot)$ is a vector space.

Proving the obvious: vector spaces behave as expected (from \mathbb{R}^m). Example:

Fact 4.6: Let $(V, +, \cdot)$ be a vector space. *V* contains exactly one zero vector (a vector satisfying axiom 3).

Proof. Take two zero vectors **0** and **0**'. Then

$$0' = 0' + 0$$
 (axiom 3: 0 is a zero vector)
= 0 + 0' (axiom 1: commutativity)
= 0 (axiom 3: 0' is a zero vector)

not a subspace (misses 0)

Abuse of notation: $(V, +, \cdot) \rightarrow V$

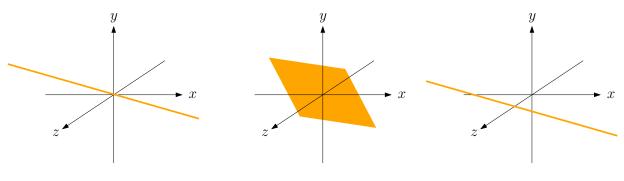
Subspaces:

Definition 4.8: Let *V* be a vector space. A nonempty subset $U \subseteq V$ is a *subspace* of *V* if the following two axioms hold for all $\mathbf{v}, \mathbf{w} \in U$ and all $\lambda \in \mathbb{R}$.

(i)
$$v + w \in U$$
;

(ii)
$$\lambda \mathbf{v} \in U$$
.

We always have $\mathbf{0} \in U$: take any $\mathbf{u} \in U$, then $0\mathbf{u} = \mathbf{0} \in U$ by (ii). Needs "obvious" Fact 4.10.



subspaces of R^3 : a line

a plane

Lemma 4.11: Let *A* be an $m \times n$ matrix. Then C(A) is a subspace of \mathbb{R}^m .

Proof. Let $\mathbf{v}, \mathbf{w} \in \mathbf{C}(A)$: there exist $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{v} = A\mathbf{x}, \mathbf{w} = A\mathbf{y}$.

$$A(\underbrace{\mathbf{x} + \mathbf{y}}_{\in \mathbb{R}^n}) = A\mathbf{x} + A\mathbf{y} = \mathbf{v} + \mathbf{w} \quad \Rightarrow \quad \mathbf{v} + \mathbf{w} \in \mathbf{C}(A)$$

 \Rightarrow subspace axiom (i). For $\lambda \in \mathbb{R}$,

$$A(\underbrace{\lambda \mathbf{x}}_{\in \mathbb{R}^n}) = \lambda A \mathbf{x} = \lambda \mathbf{v} \quad \Rightarrow \quad \lambda \mathbf{v} \in \mathbf{C}(A)$$

 \Rightarrow subspace axiom (ii).

The *quadratic* polynomials:

Lemma 4.12: Let *V* be a vector space and *U* a subspace. Then *U* is also a vector space (with the same "+" and " \cdot " as *V*).

Proof. Check the (almost) obvious!

Subspaces of...

 $\dots \mathbb{R}[x]$: The polynomials *without constant term*:

$$\mathbf{p} = \sum_{i=0}^{m} p_i x^i \text{ where } p_0 = 0$$

lookalike of (*isomorphic* to) \mathbb{R}^3

$$\mathbf{p} = p_0 + p_1 x + p_2 x^2$$

 $\mathbb{R}[x]$ "contains" $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^4, \dots$ (constant, linear, quadratic, cubic, ... polynomials)!

 $\dots \mathbb{R}^{2 \times 2}$:

isomorphic to \mathbb{R}^4

The symmetric matrices: $\begin{bmatrix} a & b \\ b & d \end{bmatrix}$ The matrices of *trace* 0: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, where a + d = 0

Bases and dimension (Section 4.2)

Basis of *V*: linearly independent vectors whose span is *V*.

Formal definition uses *set* of vectors, not sequence (more practical; handles infinite case). **Definition 4.13**: Let *V* be a vector space, $G \subseteq V$ a (possibly infinite) subset of vectors. A *linear combination* of *G* is a sum of the form

$$\sum_{\mathbf{v}\in F}\lambda_{\mathbf{v}}\mathbf{v},$$

where $F \subseteq G$ is a finite subset of G and $\lambda_{\mathbf{v}} \in \mathbb{R}$ for all $\mathbf{v} \in F$.

Lemma 4.14: Let *V* be a vector space, $G \subseteq V$. Every linear combination of $G \subseteq V$ is again in *V*.

Proof. Linear combination (of finite $F \subseteq G$, in some order): $\sum_{j=1}^{n} \lambda_j \mathbf{v}_j$.

- $\mathbf{w}_j := \lambda_j \mathbf{v}_j \in V$ for all j (function $\cdot : \mathbb{R} \times V \to V$)
- $\mathbf{w}_1 + \mathbf{w}_2 \in V$ (function $+ : V \times V \to V$)
- Repeat: $\underbrace{(\mathbf{w}_1 + \mathbf{w}_2)}_{\in V} + \mathbf{w}_3 \in V$, and so on, until $\mathbf{w}_1 + \mathbf{w}_2 + \dots + \mathbf{w}_n \in V$

Why not infinite linear combinations? Previous lemma may fail (example: polynomials)!

G: the *unit monomials*: $1, x^2, x^3, \ldots; \sum_{\mathbf{p} \in G} 1\mathbf{p} = \sum_{i=0}^{\infty} x^i$ is *not* a polynomial.

Definition 4.15:

Let *V* be a vector space, $G \subseteq V$ a subset of vectors.

 $\mathbf{Span}(G)$: set of all linear combinations of G.

G is *linearly independent* if no vector $\mathbf{v} \in G$ is a linear combination of $G \setminus \{\mathbf{v}\}$.

Definition 4.16: Let *V* be a vector space. $B \subseteq V$ is a *basis* of *V* if *B* is linearly independent and **Span**(*B*) = *V*.

Examples: (For linear independence, use private nonzero argument!)

vector space V	basis B
\mathbb{R}^m	$\{\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_m\}$
$\mathbf{C}(A)$ (subspace of \mathbb{R}^m)	independent columns of A
2×2 symmetric matrices (subspace of $R^{2 \times 2}$)	$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$
$\mathbb{R}[x]$ (polynomials)	${x^{i}: i = 0, 1,}$ (infinite set)
$\{0\}$ (smallest vector space)	(empty set)

There can be many bases:

Observation 4.18: Every set $B = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m}$ of *m* linearly independent vectors is a basis of \mathbb{R}^m .

Proof. Still need **Span**(B) = \mathbb{R}^m (every $\mathbf{v} \in \mathbb{R}^m$ is a linear combination of B). $A: m \times m$ matrix with columns $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$. Theorem 3.11: $A\mathbf{x} = \mathbf{v}$ has a unique solution

$$\Rightarrow \quad \mathbf{v} = \sum_{\substack{j=1\\A\mathbf{x}}}^m x_j \mathbf{v}_j$$

Steinitz exchange lemma:

Lemma 4.19: Let *V* be a vector space, $F \subseteq V$ finite and linearly independent, $G \subseteq V$ finite with **Span**(*G*) = *V*. Then

- (i) $|F| \le |G|$.
- (ii) There exists a subset $E \subseteq G$ of size |G| |F| such that $\mathbf{Span}(F \cup E) = V$.

Remark: $|F \cup E| \le |G|$ (*E* is allowed to contain elements of *F*).

Proof. Induction on f = |F|. f = 0 ($F = \emptyset$): (i) clear, for (ii), take E = G. f > 0: choose $\mathbf{u} \in F$, $F' = F \setminus {\mathbf{u}}$, g = |G|. F' is also linearly independent. Induction hypothesis:

- (i) $g \ge f 1$.
- (ii) There exists a subset $E' \subseteq G$ of size g (f 1) with $\operatorname{Span}(F' \cup E') = V$.

$$\mathbf{u} \in V = \mathbf{Span}(F' \cup E'), \quad \mathbf{u} \notin \mathbf{Span}(F') \text{ (}F \text{ linearly independent!)} \\ \Downarrow \\ \mathbf{u} = \sum_{\mathbf{v} \in F' \cup E'} \lambda_{\mathbf{v}} \mathbf{v}, \quad \lambda_{\mathbf{w}} \neq 0 \text{ for some } \mathbf{w} \in E' \qquad (\star)$$

 $\Rightarrow |E'| = g - (f - 1) \ge 1 \Leftrightarrow g \ge f \Rightarrow (i) \text{ for size } f.$ (ii) for size $f: E = E' \setminus \{w\}$; solve (*) for w:

$$\mathbf{w} = \frac{1}{\mu_{\mathbf{w}}} \left(\mathbf{u} - \sum_{\mathbf{v} \in F' \cup E} \lambda_{\mathbf{v}} \mathbf{v} \right)$$

Lemma 1.23:

 $\Rightarrow \quad \mathbf{w} \text{ is linear combination of } \overbrace{\{u\} \cup F' \cup E}^{F \cup E} : \quad \mathbf{Span}(F \cup E) = \mathbf{Span}(\overbrace{F \cup E \cup \{\mathbf{w}\}}^{F \cup E'})$ $(\star) : \quad \mathbf{u} \text{ is linear combination of } F' \cup E' : \qquad \underbrace{\mathbf{Span}(F' \cup E')}_{V} = \mathbf{Span}(\underbrace{F' \cup E' \cup \{\mathbf{u}\}}_{F \cup E'})$ \square

Theorem 4.20: Let *V* be a vector space; $B, B' \subseteq V$ two finite bases of *V*. Then |B| = |B'|. *Proof.* As bases, *B* and *B'* are linearly independent, and $\mathbf{Span}(B) = \mathbf{Span}(B') = V$. Apply Steinitz exchange lemma (i):

• $F = B, G = B' \Rightarrow |B| \le |B'|$

• $F = B', G = B \Rightarrow |B'| \le |B|.$

Also works without "finite" (case of polynomials). For infinite sets, |B| = |B'| means "the same kind of infinity".

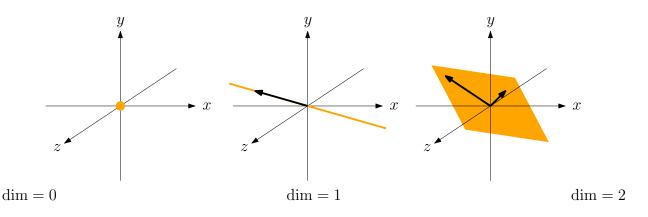
Does every vector space have a basis? Yes! Here: the "finite" case. **Definition 4.21**: A vector space V is called *finitely generated* if there exists a finite subset $G \subseteq V$ with $\mathbf{Span}(G) = V$. \mathbb{R}^m : finitely generated $(G = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m\})$ $\mathbb{R}[x]$: not finitely generated **Theorem 4.22**: Let V be a finitely generated vector space, $G \subseteq V$ a finite subset with $\mathbf{Span}(G) = V$. Then V has a basis $B \subseteq G$.

Proof. If *G* is linearly independent, B = G is a basis by Definition 4.16. "line 1" Otherwise, some $\mathbf{v} \in G$ is a linear combination of the other vectors \Rightarrow $\mathbf{Span}(G \setminus \{\mathbf{v}\}) = \mathbf{Span}(G) = V$ (Lemma 1.23). Replace *G* with $G \setminus \{\mathbf{v}\}$ (still spans *V*) and go to line 1. *G* gets smaller in every step: this finally stops with B = G.

Dimension:

Definition 4.23: Let *V* be a finitely generated vector space. Then $\dim(V)$, the dimension of *V*, is the size of any basis *B* of *V*.

 $\dim(\mathbb{R}^m) = m$ (no surprise)



Simplified basis criterion:

Lemma 4.24: Let *V* be a vector space with $\dim(V) = d$.

- (i) Let $F \subseteq V$ be a set of *d* linearly independent vectors. Then *F* is a basis of *V*.
- (ii) Let $G \subseteq V$ be a set of d vectors with $\mathbf{Span}(G) = V$. Then G is a basis of V.

Proof.

(i): Let G be a basis of V. Steinitz exchange Lemma 4.19 (ii) applies with F and G.

 $|F| = |G| = d \Rightarrow E = \emptyset$. **Span**(F) = **Span** $(F \cup E) = V \Rightarrow F$ is a basis.

(ii) We find a basis $B \subseteq G$ of size d (Theorem 4.22). $|B| = |G| \Rightarrow B = G \Rightarrow G$ is a basis. \Box