
Linear Algebra, First Part
Lecture Notes

Bernd Gärtner
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Chapter 0

Introduction

0.1 About these notes

These are the lecture notes for the first part of the course

Lineare Algebra (401-0131-00L)

held at the Department of Computer Science at ETH Zürich in HS24.
These notes can be considered as a full version of what I plan to write on the tablet

during the lectures. Lecture plans will be made available before each lecture. The tablet
notes (in German) reflect the reality and will be made available after each lecture. To-
gether with the explanations (and answers to questions) given in the lectures, they will
contain the “essentials”, but in order to fully understand them, it can be helpful to look
up more details and additional explanations in the lecture notes.

In content, the lecture notes are based on the book

Introduction to Linear Algebra (Sixth Edition) by Gilbert Strang, Wellesley -
Cambridge Press, 2023 [Str23].

The main difference is that the approach taken here is more rigorous than Strang’s.
Strang introduces the material on an intuitive level, guided by many examples; this pro-
vides a great informal introduction to Linear Algebra. What we add here (hopefully with-
out losing the intuition) are formal definitions of concepts, as well as mathematical state-
ments with proofs for the key results.

Strang’s book is not part of the course’s official material, and there is no need for stu-
dents to buy the book (it doesn’t have an official electronic version). With the lectures,
lecture plans, tablet notes, lecture notes, exercises, and exercises classes, the course is self-
contained. Strang’s book and others mentioned on the course web page serve as optional
literature.

Zürich, September 3, 2024 Bernd Gärtner
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0.2 About computer science (and mathematics)

As a first semester student of computer science, you may wonder why one of the first
things you see is mathematics, and in particular linear algebra. In order to answer this,
we first need to answer a different question: What is computer science?

Computer scientists are frequently approached for help with installing computers,
getting the internet to work, and similar technical tasks. To many people, a computer sci-
entist is simply an information technology expert. But this point of view is fundamentally
wrong. The computer scientist Mike Fellows has explained this very well already in 1991,
using a simple analogy:

Computer science is not about machines in the same way that astronomy is
not about telescopes. There is an essential unity of mathematics and computer
science [Fel93].

The first sentence of this quote (often misattributed to Edward Dijkstra) is well-known
and gets the main point across: computer science is not mainly about computers. Every-
one agrees that computers, just like telescopes, are great tools, but they merely help us in
achieving some goals, they are not the goals themselves. It is true that astronomers are
involved in building telescopes, and computer scientists are involved in building com-
puters. Generally, if you need a tool that you cannot buy off the shelf, you will team up
with people that can build it for you, and this needs expertise from both sides. But in the
end, you want to use the tool for something, so you are not mainly interested in the tool
itself.

The second part of the quote is less known, but not less important. It indicates that
computer science and mathematics are very strongly connected. To understand this, we
need to say what computer science actually is. If you ask the internet for a definition of
computer science, you get many wrong answers that start with “the study of comput-
ers. . . ”, even from serious sources. The Wikipedia article about computer science starts
differently and does not mention computers in the first sentence:1

Computer science is the study of computation, information, and automa-
tion.

This is correct but a bit too short; the German version of the page,2 has a more de-
tailed and clearer definition, taken from the “Duden Informatik A-Z” [CSB06, Eintrag
Informatik, S. 305].

Informatik ist die Wissenschaft von der systematischen Darstellung, Spei-
cherung, Verarbeitung und Übertragung von Informationen, besonders der
automatischen Verarbeitung mit Hilfe von Digitalrechnern.

1https://en.wikipedia.org/wiki/Computer_science, accessed on August 2, 2024
2https://de.wikipedia.org/wiki/Informatik, accessed on August 2, 2024
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In English, this reads as follows:

Computer science is the science of the systematic representation, storage,
processing and transfer of information, in particular of the automatic process-
ing using computers.

This means, computer science is about dealing with information. The German term
Informatik transports this message much better than the English term Computer science.

As an example, let’s consider addition as you (and children throughout many cen-
turies) have learned it in primary school, for example

123
+ 486
= 609

This is systematic processing of information (in this case numbers), represented in
decimal place-value system. Hence, this is not only mathematics, but according to the
above definition, it is also computer science! In modern terms, we would call schoolbook
addition an algorithm. Computers can do such additions automatically and very fast
(this is what the “in particular” part of the definition is about), but the algorithm itself
was invented much earlier than the computers.

While an algorithm is mostly associated with computer science, the theoretical foun-
dations of many algorithms and other computer science inventions are inherently math-
ematical. Schoolbook addition is a prime example. Here, the most important theoretical
foundation is the place-value system. This is one of the great historical developments in
mathematics, driven by the need to efficiently compute with numbers.

Today, there are new needs, for example, efficiently training huge machine learning
models, or securing computer systems against cyberattacks. This needs established as
well as new mathematics. Mathematical research is often motivated by applications in
computer science, and mathematicians work with computer science tools on a daily ba-
sis. For these reasons, every computer science student needs mathematical foundations,
and every mathematics student needs computer science foundations. An essential unity,
indeed.

0.3 About linear algebra

The origins of (linear) algebra can be traced back to the 9th century when the Persian
polymath Al-Khwarizmi published The Compendious Book on Calculation by Completion and
Balancing. The word algebra also goes back to this book, see the highlighted part on the
title page shown in Figure 1. In modern Arabic letters and transcribed to Latin letters
(right to left), this reads as follows:

= =
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Al Khwarizmi’s book teaches how to systematically solve linear and quadratic equa-
tions in one variable. While this is basic highschool material today, the theory underlying
it had to be developed at some point, and it was Al-Khwarizmi who did this; for exam-
ple, the word balancing in the title of his work refers to the technique of moving a term
to the other side of an equation, something you need to do when you want to solve for a
variable.

Figure 1: Title page of Al-Khwarizmi’s book; the highlighted text in the lines written
from bottom to top is the Arabic word Al-jabr. This is a higher-resolution image of the one
found on Wikipedia (https://en.wikipedia.org/wiki/Al-Jabr), provided to the
author by Digital Bodleian, https://digital.bodleian.ox.ac.uk, CC-BY-NC 4.0.
A translation of the title page can be found here

The field of linear algebra has developed from two historical roots: analytic geometry
and linear equations. Analytic geometry deals with the description of and calculation with
geometric objects through coordinates and formulas. We could also call it “rigorous”

7

https://en.wikipedia.org/wiki/Al-Jabr
https://digital.bodleian.ox.ac.uk
https://creativecommons.org/licenses/by-nc/4.0/
https://commons.wikimedia.org/wiki/File:Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg


x

y

3

2
(3, 2)

Figure 2: A point in the two-dimensional plane, expressed in Cartesian coordinates

geometry. Everybody knows what a circle is, but if you want to describe a particular
circle, you need to say what the center and the radius are. The center is a point that you
typically describe with Cartesian coordinates, as in Figure 2.

Having such rigorous descriptions of geometric objects, you can start to answer ques-
tions about them analytically by using mathematics; for example, do two given lines in
three-dimensional space intersect or not?

In answering this and many other questions, systems of linear equations in more than
one variable come up, and this is the second root of linear algebra. Today, such systems
are considered as easy to solve in many cases, but this is the result of developments that
happened over centuries. And they still happen now: solving systems of linear equations
is an active research topic, in particular since the traditional algorithms cannot handle the
very large systems that we have in many applications today. Even small systems are not
necessarily easy for a human and form a basis of many puzzles. Consider this one:

Dominik is twice as old as Susanne and three years older than Claudia.
Together, the children are 17 years old. How old are the three children?

Even without having heard about linear equations, you will be able to figure this out,
employing some guesswork and mental arithmetic. But this quickly reaches its limits
when more children are involved in the puzzle. There is a reason why such puzzles that
are made for entertainment rarely have more than three variables (in this case, the ages of
the children). As a system of three linear equations, the puzzle reads as follows:

D = 2S

D = C + 3

D + S + C = 17

Here, D,S, and C are variables for the unknown ages of the children, and the three equa-
tions encode the three pieces of information that the puzzle provides. The equations are
linear because every variable occurs only in the first power. In contrast, x2−2x+3 = 0 is a
quadratic equation, because the variable x occurs in the second power as well. There are
also cubic, quartic, quintic, etc. equations. Solving systems of those falls into the domain
of (non-linear) algebra. Linear algebra deals with m linear equations in n variables, where
both numbers m and n can be very large in practice.
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In the above linear puzzle equations, you can convince yourself that there are unique
numbers that you can plug in for D,S, and C such that all three equations are satisfied.
Conveniently, these numbers are natural numbers; you don’t want a puzzle where a child
is 2.7 years or −3 years old. But in principle, the solutions to a system of linear equations
can be arbitrary numbers, and it is up to the application to decide whether these make
sense or not.

Interestingly, Al-Khwarizmi only provided formulas for positive solutions of equa-
tions in his book, as he thought that only those make sense. Indeed, in a world where
numbers count physical quantities, the idea of a negative number seems downright crazy.
However, in Al-Khwarizmi’s computations (including “balancing”), negative numbers
implicitly occur in order to arrive at the positive solutions.

Starting from the roots of analytic geometry and systems of linear equations, linear
algebra has grown many important branches, some of which appear in Figure 3 and also
later in these notes.

systems of linear equations analytic geometry

vector spaces

complex number plane

matrices

numerical linear algebra

linear transformations

determinants

eigenvalues

vectors

Figure 3: The tree of linear algebra: Roots and some important branches
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Chapter 1

Vectors

1.1 Vectors and linear combinations
Vectors in Rm and their linear combinations are fundamental in linear algebra and
at the same time easy to understand. In fact, you may know much of this material
from highschool. This leaves room to also learn about some important elements of
mathematical thinking and writing. Most notably, you will see a first proof.

Vectors as you know them from highschool “live” in 2-dimensional or 3-dimensional
space. More abstractly, they live in some m-dimensional space, where m ∈ N, the set
{0, 1, 2, . . .} of natural numbers.1 Starting from m = 4, these spaces are hard to visualize,
but linear algebra can handle them as easily as R2 and R3.

Mathematically, these spaces are sets that are called R2,R3, and Rm, where R is the
set of real numbers. R2, the xy-plane, contains (has as elements) all pairs (v1, v2) of real
numbers, for example (4, 1). R3, the xyz-space, contains all triples (v1, v2, v3) of real num-
bers, for example (−2, 2, 3). Rm contains all tuples or sequences (v1, v2, . . . , vm) of m real
numbers. Here, the numbers from 1 to m serve as indices indicating the position in the
sequence: for example, v5 denotes the 5-th number in the sequence.

When we think of the elements of R2 or R3 as vectors, we typically draw them as
arrows in a Cartesian coordinate system, with the tail of the arrow at the origin, and the
head at the respective coordinates. We use column vector notation, indicating that we now
think of a pair (or triple, or tuple) as a vector; see Figure 1.1. Sometimes, we use row vector
notation as in

[
4 1

]
. In referring to a vector in text or in a formula, we use bold lower

case Latin letters such as v and w. You may have learned to write vectors as v⃗, w⃗, but v is
as good (or bad) as v⃗. The important thing is to be consistent.

The zero vector corresponds to the origin and is written as 0, in every dimension. This
is what mathematicians call an abuse of notation. The abuse here is that the meaning of 0

1For mathematicians, 1 is typically the first natural number; for computer scientists it’s 0. None of the
two choices is better or worse than the other one. In these “linear algebra for computer scientists” notes,
we start with 0.
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x

y [
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−2

2

]

0 =

[
0

0

]0
x

y

z

−2

2

0

−2

2

3



0 =

00
0


0

3
v =


v1
v2
...
vm

 ,w =


w1

w2
...

wm



Figure 1.1: R2, the xy-plane R3, the xyz-space Column vectors in Rm

depends on the context and may, as in Figure 1.1, refer to the zero vector in R2 or the zero
vector in R3. Such abuse of notation is common and also known from natural language.
If you take “the bike”, it is clear that you mean your bike, while your friends, saying the
same thing, refer to their bikes.

The arrow drawing suggests an interpretation of a vector as a movement, for example
“go 4 steps right and 1 step up!” Under this interpretation, the arrow can actually be
placed anywhere and still visualizes the same vector. It can also be useful to visualize a
vector as a point (at its coordinates); see Figure 1.2.

x

y [
4

1

]
0

[
4

1

]

x

y [
4

1

]
0

Figure 1.2: Vector: visualization as arrow (left), or point (right)

As an example why this is useful, let’s try to visualize the set of vectors in R2 whose
coordinates sum up to 5, highlighting a specific such vector. Then it should be clear that
Figure 1.3 (right), with the gray line showing the vectors in question as points at their
arrowheads, is more suitable than Figure 1.3 (left) that is just cluttered with arrows.

1.1.1 Vector addition

Adding two vectors combines their movements. Depending on which movement we do
first, we can take two different routes to the same result; together, these routes form a
parallelogram. Algebraically, vector addition works coordinate-wise, i.e. we add up corre-
sponding coordinates of the two vectors; see Figure 1.4.
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x

y [
4

1

]
0

x

y [
4

1

]
0

Figure 1.3: Vectors v inR2 with v1+v2 = 5: visualization as arrows (left), or points at their
arrowheads (right)

x

y [
2

3

] [
5

2

]
[

3

−1

]
[
2
3

]
+

[
3
−1

]
=

[
5
2

]

Figure 1.4: The parallelogram of vector addition

Definition 1.1 (Vector addition). Let

v =


v1
v2
...
vm

 ,w =


w1

w2
...

wm

 ∈ Rm. The vector v +w :=


v1 + w1

v2 + w2
...

vm + wm

 ∈ Rm is the sum of v and w.

While examples are very useful to understand a concept, a definition is the official ref-
erence. The goal of a definition is to introduce the concept in full generality. Definition 1.1
tells you how to add any two vectors of any dimension. The symbol := is used to define
what’s left of it by what’s right of it.

In the same way, we can add more vectors. For example u+ v+w is the sum of three
vectors, and in this case, we get six possible routes to the result; see Figure 1.5.

Unfortunately, Definition 1.1 does not define u + v + w. It only talks about adding
two vectors at a time. So it defines (u + v) + w or u + (v + w). Since addition in R is
associative, it doesn’t matter where we put the brackets, so it is customary to omit them
and write u+v+w. Similarly, in talking about the two possible routes to arrive at v+w,
we implicitly used that v + w = w + v which holds since addition in R is commutative.
The six possible routes for three vectors come from the fact that we can add them up in
six different orders.

It is an element of mathematical thinking to clarify the meaning of u+v+w when this
was not explicitly defined. Only after that, you really understand the meaning and can
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x

y

[
2

3

]

[
3

−1

]

[
5

4

] [
10

6

]

[
2
3

]
+

[
3
−1

]
+

[
5
4

]
=

[
10
6

]

Figure 1.5: Adding three vectors

safely write u + v + w. As a Swiss luxury watch commercial puts it: to break the rules,
you must first master them.

Figure 1.6 illustrates some of the routes one can go in adding up 9 vectors. We haven’t
drawn all possible routes, as this would lead to a very cluttered figure.

Figure 1.6: Adding 9 vectors (solid colored arrows); the result is the black arrow, and the
dashed arrows outline possible routes. The drawing was made using the programming
language Processing, https://processing.org.

Challenge 1.2. How many routes to the result are there in adding up 9 vectors? Or n vectors?
Can you describe which of them have been selected for Figure 1.6?
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1.1.2 Scalar multiplication

This corresponds to moving λ times as far, for some real number λ (known as the scalar).
For scalars, we typically use lower case Greek letters.

We say that the resulting vector is a scalar multiple of the original one. The scalar
can be negative, in which case we move into the opposite direction. Algebraically, scalar
multiplication multiplies each coordinate of the vector with the scalar; see Figure1.7.

x

y [
2

1

] [
6

3

]

[
−4

−2

] 3

[
2
1

]
=

[
6
3

]
(−2)

[
2
1

]
=

[
−4
−2

]

Figure 1.7: Scalar multiplication

Definition 1.3 (Scalar multiplication). Let

v =


v1
v2
...
vm

 ∈ Rm, λ ∈ R. The vector λv :=


λv1
λv2

...
λvm

 ∈ Rm is a scalar multiple of v.

Note that the zero vector 0 is a scalar multiple of every vector, obtained by choosing
scalar λ = 0.

1.1.3 Linear combinations

This operation combines vector addition and scalar multiplication.

Definition 1.4 (Linear combination). Let v,w ∈ Rm, λ, µ ∈ R. The vector

λv + µw ∈ Rm

is a linear combination of v and w. In general, if v1,v2, . . . ,vn ∈ Rm and λ1, λ2, . . . , λn ∈ R,
then

λ1v1 + λ2v2 + · · ·+ λnvn

is a linear combination of v1,v2, . . . ,vn.

Table 1.1 gives three linear combinations of two specific vectors v and w. What are all
the linear combinations of v and w that can we get in this way? Here is the answer:
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v =

[
2
3

]
,w =

[
3
−1

]
:

λ µ λv µw λv + µw

−3 2

[
−6
−9

] [
6
−2

] [
0

−11

]
1 −1

[
2
3

] [
−3
1

] [
−1
4

]
3 0

[
6
9

] [
0
0

] [
6
9

]
Table 1.1: Three linear combinations of two vectors v,w

Fact 1.5. Every vector in R2 is a linear combination of the two vectors

v =

[
2
3

]
,w =

[
3
−1

]
.

Proof. Let

u =

[
u1

u2

]
be an arbitrary vector in R2. We need to show that we can find scalars λ, µ ∈ R such that

λ

[
2
3

]
+ µ

[
3
−1

]
=

[
u1

u2

]
.

Considering the rules of vector addition and scalar multiplication, this vector equation is
actually made up of two “normal” equations, one for each coordinate:

2λ+ 3µ = u1,

3λ− 1µ = u2.

This is a system of two linear equations in two variables λ and µ, and the rest is therefore
a highschool job.

Well, almost: What you may find unusual here is that the system also contains the
variables u1, u2. But while the variables λ and µ stand for the unknown numbers that we
want to compute, u1 and u2 stand for known numbers, the entries of our target vector u.
By solving this system of equations (the solution will depend on u1 and u2), we therefore
solve it for all possible values of u1 and u2 at the same time. And this was exactly the
point, since we want to make the argument for every possible vector u. This is what
differentiates a proof from a calculation: a proof makes one argument for many (possibly
infinitely many) situations, while a calculation just handles one situation.

After this digression, let’s solve the system: Multiplying the second equation by 3 and
adding it to the first one cancels the variable µ:

2λ + 3µ = u1

9λ − 3µ = 3u2

11λ = u1 + 3u2

15



This gives

λ =
u1 + 3u2

11
.

To get µ, we isolate µ in one of the equations (let’s take the first one) and substitute the
value of λ that we just got:

3µ = u1 − 2λ = u1 −
2u1 + 6u2

11
=

11u1 − (2u1 + 6u2)

11
=

9u1 − 6u2

11
.

Dividing by 3 yields

µ =
3u1 − 2u2

11
.

So λ and µ have been found for all possible values of u1 and u2 which completes the
proof.

It’s always good to double check this on examples. Let’s look at the three linear com-
binations that we have previously computed in Table 1.1 and see whether the formulas
for λ and µ give us back the correct scalars. Table 1.2 shows that they do.

v =

[
2
3

]
,w =

[
3
−1

]
:

λ µ λv + µw = u u1 u2
u1+3u2

11
3u1−2u2

11

−3 2

[
0

−11

]
0 −11 −3 2

1 −1
[
−1
4

]
−1 4 1 −1

3 0

[
6
9

]
6 9 3 0

Table 1.2: Checking the formulas from the proof of Fact 1.5 on three vectors

We can also understand this proof geometrically. The two equations 2λ+ 3µ = u1 and
3λ − 1µ = u2 can be drawn as lines in the λµ-plane, and their point of intersection is the
desired solution to both equations. For u1 = −1, u2 = 4 (middle row of Table 1.2), the two
lines are drawn in Figure 1.8 (left). Unsurprisingly, their intersection is at (λ, µ) = (1,−1).

The crucial observation is that for other values of u1, u2, the lines are different but
still parallel to the lines for u1 = −1, u2 = 4; see Figure 1.8 (right). So there is always
an intersection, meaning that we find values λ, µ for every vector u. This was the “row
picture” behind the proof.

There is also a “column picture”, see Figure 1.9. The two vectors v and w define axes
of a skewed coordinate system (solid lines). Given a target vector u, we make shifted
copies of both axes such that they cross in u (dashed lines). Between the two pairs of
axes, a parallelogram emerges, and this is exactly the one that expresses u as a sum of
scaled versions of v and w, the gray arrows in Figure 1.9 (right).
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λ

µ

λ = 1, µ = −1

3λ− 1µ = 4
2λ + 3µ = −1

λ

µ

3λ− 1µ = u2

2λ + 3µ = u1

Figure 1.8: “Row picture” behind the proof of Fact 1.5, based on the rows of the equation
system. We find the target scalars by intersecting two lines in the λµ-plane.

x

y

[
2

3

]
[

3

−1

]

[
u1
u2

]

0
x

y

[
2

3

]
[

3

−1

]

[
u1
u2

]
λ

[
2

3

]
µ

[
3

−1

]

0

Figure 1.9: “Column picture” behind the proof of Fact 1.5, based on the columns of the
equation system: We find the target scalars as coordinates in a skewed coordinate system.

Fact 1.5 may be wrong for other vectors. As an example, consider

v =

[
2
3

]
,w =

[
4
6

]
.

Here, w is a scalar multiple of v, so every linear combination of the two is just another
scalar multiple of v. Therefore, the linear combinations form a line through v, and a
vector not on that line cannot be obtained as a linear combination.

Challenge 1.6. Try to prove a version of Fact 1.5 where

v =

[
v1
v2

]
,w =

[
w1

w2

]
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are arbitrary vectors. Where does the proof fail if the two vectors are scalar multiples of each other?
What goes wrong in the row and column pictures in this case? And why does the proof indeed
succeed when the two vectors are not scalar multiples of each other?

1.1.4 Affine, conic, and convex combinations

In many applications, we are not interested in all linear combinations of the given vectors.
The following three types of special linear combinations are of particular importance.

Definition 1.7 (Affine, conic, convex combination). A linear combination λ1v1+λ2v2+ · · ·+
λnvn of vectors v1,v2, . . . ,vn is called

(i) an affine combination if λ1 + λ2 + · · ·+ λn = 1,

(ii) a conic combination if λj ≥ 0 for j = 1, 2, . . . , n, and

(iii) a convex combination if it is both an affine and a conic combination.

We will illustrate these notions with linear combinations λv + µw of two vectors
v,w ∈ R2 that are not scalar multiples of each other. By Challenge 1.6, the set of lin-
ear combinations of such vectors is the whole plane R2; see Figure 1.10 (i). What is the set
of affine combinations? If λ+ µ = 1, we can write

λv + µw = λv + (1− λ)︸ ︷︷ ︸
µ

w = w + λ(v −w).

Hence, the set of all affine combinations is the set

{w + λ(v −w) : λ ∈ R}.

This is the line through v and w (interpreted as points; see Figure 1.3). Plugging in λ = 0
gives w, and for λ = 1, we obtain v. Values of λ between 0 and 1 lead to points in between.
For λ < 0 we end up left of w, and for λ > 1, we will be right of v. Generally, any point
on the line is obtained by the rule “go to w, then make a step parallel to v − w!”. See
Figure 1.10 (ii).

In a conic combination, the parallelogram for adding λv and µw is always in the angle
between v and w , and by varying λ and µ, we can get every vector in this angle, officially
called the cone spanned by v and w; see Figure 1.10 (iii). Finally, the convex combinations
are by definition all points on the line through v and w that are also in the cone spanned
by v and w. This set is the line segment spanned by v and w, see Figure 1.10 (iv).

Challenge 1.8. Understand the affine, conic and convex combinations of three vectors in R2!

18



v
w

v
w

v −w
v

w

λv + µw

λv

µw

v
w

linear (i) affine (ii) conic (iii) convex
combinations of two vectors

Figure 1.10: Two vectors and their combinations

1.1.5 Defining the dots: sequences, sums, sets, and vectors

The dots notations as used in

v1,v2, . . . ,vn and λ1v1 + λ2v2 + · · ·+ λnvn and


v1
v2
...
vm


are fine, but it is never too early to get to know the precise mathematical notations.
This will also help in really understanding the dots notations. Formally, when we write
v1,v2, . . . ,vn, we mean the sequence (v1,v2, . . . ,vn) of n vectors; we typically omit the
surrounding brackets if we don’t need the sequence itself as a mathematical object. There
is a more concise way of writing the sequence:

(v1,v2, . . . ,vn) = (vj)
n
j=1.

Similarly, sums have a mathematical notation:

λ1v1 + λ2v2 + · · ·+ λnvn =
n∑

j=1

λjvj.

Here, j is called the summation index.
The benefit of this notation becomes apparent when we discuss some special cases.

What if n = 2? It’s not entirely clear how to interpret v1,v2, . . . ,vn in this case. Does
v2 now appear twice? And if n = 1? Then there is not even a vector v2, so why is it
mentioned?

In starting with v1,v2, . . ., we want to indicate a pattern that continues until vn, and
we therefore mean (v1,v2) if n = 2 and (v1) if n = 1. Still, it’s potentially confusing to
always mention three vectors v1,v2 and vn, even if there are less. In contrast, the notation

(vj)
n
j=1

19



has a clear definition: it’s the sequence of all vectors vj where j goes through the range
from 1 to n in increasing order. This range contains the integers j that satisfy 1 ≤ j ≤ n.
This naturally covers the cases n = 1 and n = 2. For the sum, it’s the same:

n∑
j=1

λjvj

is obtained by summing up all λjvj for which j goes through the range from 1 to n.
This brings us to the last special case: what if n = 0, so there are no vectors? The

mathematical notation handles this elegantly: as the range of integers from 1 to 0 is empty,
we have

(vj)
0
j=1 = (),

the empty sequence. And
0∑

j=1

λjvj = 0,

the zero vector. Indeed, if you add up vectors, you start from 0 and then add one vector
at a time. But if there are no vectors to add, you remain stuck at 0. This is like a scale
that shows a weight of 0 before you put anything on it. As a consequence, 0 is a linear
combination of every sequence of vectors, even the empty one.

Having made it clear that for n = 0, v1,v2, . . . ,vn is the empty sequence and λ1v1 +
λ2v2 + · · · + λnvn = 0, there is also no harm if we keep using the dot notations. For
novices, they may be easier to read than (vj)

n
j=1 and

∑n
j=1 λjvj . But as in particular the

sum notation is standard throughout many sources, it is also good to get used to it early.
When we reorder a sequence of vectors, we get the same linear combinations, because

vector addition is commutative. Also, if a vector appears more than once in the sequence,
we can omit its duplicates and still get the same linear combinations. This means, all that
matters is the set of vectors involved in the sequence (vj)

n
j=1. We will write this set as

{vj : j ∈ [n]}.

Here, [n] is an unambiguous notation for the the range from 1 to n, considered as a set.
Within a set, the order does not matter, so we prefer the notation [n] over {1, 2, . . . , n}. But
the latter notation and also {v1,v2, . . . ,vn} or {vj : j = 1, 2, . . . , n} for the set of vectors
are perfectly fine as well. The important thing is that there is no order of vectors in the
set, and every vector only appears once. We can write {v1,v1,v2}, but this is the same as
{v1,v2} or {v2,v1}.

Finally, the vertical dots: a vector 
v1
v2
...
vm


20



can more concisely be written as [vi]mi=1. This is very similar to the sequence notation, and
indeed, a vector as an element ofRm is formally just a sequence of m real numbers. Using
square brackets instead of normal brackets indicates that we mean a column vector. This
notation for example allows us to write down the vector [i2]5i=1. What does this mean?
The expression in brackets tells us what the i-th entry of the vector should be, and the
range after the bracket tells us which range of i’s we are considering. Hence,

[i2]5i=1 =


1
4
9
16
25

 .

Similarly, [0]6i=1 is the 6-dimensional zero vector. Using this notation, we could also define
the sum of two vectors more “efficiently” than Definition 1.1 does it, namely as follows:

[vi]
m
i=1 + [wi]

m
i=1 := [vi + wi]

m
i=1.

We can still use the vertical dots notation as it is more readable, despite needing more
space. But now that we know what it precisely means, we for example understand that
for m = 1, 

v1
v2
...
vm

 = [v1] ∈ R1.

What about the case m = 0? Are there vectors with no entries? Formally, they should be
elements of R0. Actually, R0 contains exactly one element, namely the empty sequence
() of real numbers. We can rightfully consider this as the 0-dimensional zero vector. But
talking about this case in any further detail would get us into nerd territory.

1.2 Scalar products, lengths and angles

The scalar product of two vectors is a number that lets us measure the length of a
vector and the angle between two vectors. Scalar products naturally appear all over
linear algebra and have many practical applications. Scalar products are also at the
heart of two important inequalities, the Cauchy-Schwarz inequality, and the triangle
inequality.

Given how vector addition works (Section 1.1.1), you might expect vector multiplica-
tion to work like this: [

1
2

]
·
[
3
4

]
=

[
1 · 3
2 · 4

]
=

[
3
8

]
.
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This is known as the Hadamard product, but in the range of linear algebra products, it only
occupies a niche. Among the topsellers, we find the scalar product whose result is not a
vector, but a number (or a scalar, in linear algebra jargon; this is where the name comes
from).

1.2.1 Scalar product

The scalar product of two vectors is obtained by multiplying corresponding coordinates,
and adding up the products: [

1
2

]
·
[
3
4

]
= 1 · 3 + 2 · 4 = 11.

Definition 1.9 (Scalar product). Let

v =


v1
v2
...
vm

 ,w =


w1

w2
...

wm

 ∈ Rm.

The scalar product of v and w is the number

v ·w := v1w1 + v2w2 + · · ·+ vmwm =
m∑
i=1

viwi.

From this definition, we can directly derive some rules that are frequently needed in
computing with scalar products. We summarize these in an observation. This is a state-
ment whose proof is simple and straightforward enough to be omitted.

Observation 1.10. Let u,v,w ∈ Rm be vectors and λ ∈ R a scalar. Then

(i) v ·w = w · v; (symmetry)

(ii) (λv) ·w = λ(v ·w) = v · (λw); (taking out scalars)

(iii) u · (v +w) = u · v + u ·w and (u+ v) ·w = u ·w + v ·w; (distributivity)

(iv) v · v ≥ 0, with equality exactly if v = 0. (positive-definiteness)

While (i) and (iv) are quite obvious from the definition of the scalar product, (ii)
and (iii) need some straightforward calculations as a proof. To show what we mean by
“straightforward”, we provide the calculations for the first part of (iii). These use dis-
tributivity in R:

u · (v +w) =
m∑
i=1

ui(vi + wi) =
m∑
i=1

(uivi + uiwi) =
m∑
i=1

uivi +
m∑
i=1

uiwi = u · v + u ·w.

Properties (ii) and (iii) together are known as linearity in both arguments.
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1.2.2 Euclidean norm

The Euclidean norm of a vector v is obtained by taking the square root of the scalar prod-
uct with itself. We can do this, since this scalar product is nonnegative by Observa-
tion 1.10 (iv).

Definition 1.11 (Euclidean norm). Let v ∈ Rm. The Euclidean norm of v is the number

∥v∥ :=
√
v · v.

Some sources use |v| for the norm, but we reserve this notation for the absolute value
of a number; for example, |3| = | − 3| = 3.

You can think of the Euclidean norm as defining the length of a vector. You may argue
that we don’t need to define this, since a vector already has a length (just measure how
long the arrow is). But this is true only inR2 andR3 where we can draw vectors as arrows.
In higher dimensions, it is not a priori clear how to measure the length of a vector v. But
now we know: compute its Euclidean norm ∥v∥!

In R2 and R3, the Euclidean norm indeed measures the length of the arrow; so we’re
not really inventing a new concept of length here, we simply extend a familiar concept to
higher dimensions. To see this, we first expand the scalar product to obtain the following
formula for the Euclidean norm:∥∥∥∥∥∥∥∥∥


v1
v2
...
vm


∥∥∥∥∥∥∥∥∥ =

√
v21 + v22 + · · ·+ v2m =

√√√√ m∑
i=1

v2i .

For example,

∥∥∥∥[−42
]∥∥∥∥ =

√
(−4)2 + 22 =

√
20,

∥∥∥∥∥∥
−42

3

∥∥∥∥∥∥ =
√

(−4)2 + 22 + 32 =
√
29.

Let’s first look at the situation in R2 where Figure 1.11 is the key.
The vector

v =

[
v1
v2

]
is the hypotenuse of a right-angled triangle whose legs have lengths |v1| and |v2|, see
Figure 1.11. Hence, using the Pythagorean theorem, the squared length of v is

|v1|2 + |v2|2 = v21 + v22 = ∥v∥2,

and “length of v equals ∥v∥ is obtained by taking square roots. Building on this, Fig-
ure 1.12 deals with the situation in R3.
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v =

[
v1
v2

]

0

|v2|

|v1| 900

√
v21 + v22

Figure 1.11: The Euclidean norm measures the length of a vector in R2.v1v2
0



0

√
v21 + v22|v3|

v =

v1v2
v3

 900 |v1|

|v2|

√
v21 + v22 + v23

Figure 1.12: The Euclidean norm measures the length of a vector in R3.

In R3, the vector

v =

v1v2
v3


is the hypotenuse of a right-angled triangle whose legs have lengths

√
v21 + v22 (as just

computed) and |v3|; see Figure 1.12. Thus, Pythagoras tells us that the squared length of
v is √

v21 + v22

2

+ |v3|2 = v21 + v22 + v23 = ∥v∥2.

Unit vectors. A unit vector is a vector u such that ∥u∥ = 1. In R2, the unit vectors lie on
the unit circle with center 0 and radius 1; see Figure 1.13.

Using Definition 1.11 of the Euclidean norm, and taking out scalars (Observation 1.10 (ii)),
it is easy to see that for every vector v ̸= 0, the vector

v

∥v∥
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0

vu

1 v
‖v‖

Figure 1.13: A unit vector u on the unit circle. For every nonzero vector v, the scaled
vector v/∥v∥ is a unit vector.

is a unit vector, where scalar division is just scalar multiplication with the reciprocal:

v

∥v∥
:=

1

∥v∥
v.

In Rm, there are m standard unit vectors. These are the ones that have one coordinate
equal to 1 and all others equal to 0. We use the notation ei for the standard unit vector
that has the 1 at the i-th coordinate:

R3 : e1 =

10
0

 , e2 =

01
0

 , e3 =

00
1

 Rm : ei =


0
...
1
...
0

← coordinate i

In R2, the two standard unit vectors are the ones in the directions of x- and y-axis. In
R3, e3 goes along the z-axis; see Figure 1.14.

e1 =

[
1

0

]
e2 =

[
0

1

]

x

y

e1 =

10
0


e2 =

01
0


x

y

e3 =

00
1


z

Figure 1.14: The standard unit vectors in R2 and R3

Other norms. To stress the point that the length of a vector is nothing God-given, we
remark that there are many other norms for vectors that make sense and are being used.
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Here are two examples, the 1-norm and the∞-norm:

∥v∥1 :=
m∑
i=1

|vi| (1-norm)

and
∥v∥∞ :=

m
max
i=1
|vi| (∞-norm).

In these norms, the “unit circles” look different, see Figure 1.15. The vectors in R2 that
have length 1 according to the 1-norm form a “diamond”; under the ∞-norm, we get a
square. The standard unit vectors are also unit vectors under the 1-norm and the∞-norm.

0

u

‖u‖ = 1 ‖u‖∞ = 1

0

‖u‖1 = 1

u u

0

Figure 1.15: Unit vectors in the Euclidean norm (left), 1-norm (middle),∞-norm (right)

All three norms are special cases of p-norms, where p ≥ 1 can be any real number:

∥v∥p = p

√√√√ m∑
i=1

|vi|p.

We see that the Euclidean norm is actually the 2-norm, but we still write it as ∥v∥, not
∥v∥2, since for us, it is the “standard” norm. The∞-norm is an abuse of notation, since
∞ is not a real number. But as “p goes to infinity”, the largest coordinate of v in absolute
value is all that matters. In formulas,

lim
p→∞
∥v∥p = ∥v∥∞.

1.2.3 Cauchy-Schwarz inequality

As innocent as it looks, the importance of this inequality cannot be overestimated.

Lemma 1.12 (Cauchy-Schwarz inequality). For any two vectors v,w ∈ Rm,

|v ·w| ≤ ∥v∥∥w∥.

Moreover, equality holds exactly if one vector is a scalar multiple of the other.
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Generally, a lemma is a helper statement that may not be very interesting on its own;
but the more it actually helps, the more important it becomes. In this sense, a lemma is
like a Swiss army knife, where the Cauchy-Schwarz inequality is a highly multifunctional
one.

Proof. We first consider the case where v and w are unit vectors, so ∥v∥ = ∥w∥ = 1. Using
Observation 1.10 and Definition 1.11 of the Euclidean norm, we compute

0 ≤ (v −w) · (v −w) = v · v︸︷︷︸ + w ·w︸ ︷︷ ︸ − 2v ·w = 2− 2v ·w ⇒ v ·w ≤ 1,

∥v∥2 ∥w∥2

0 ≤ (v +w) · (v +w) =
︷︸︸︷
v · v +

︷ ︸︸ ︷
w ·w + 2v ·w = 2 + 2v ·w ⇒ v ·w ≥ −1.

Summarized as |v ·w| ≤ 1, this proves the Cauchy-Schwarz inequality for unit vectors.
Now suppose v and w are arbitrary vectors. If one of them is 0, the inequality holds

(both sides are 0). If v ̸= 0 and w ̸= 0, we can apply the previous calculations after scaling
v and w to unit length. This gives

−1 ≤ v

∥v∥
· w

∥w∥
≤ 1,

Taking out scalars according to Observation 1.10 (ii) and multiplying all three terms
with ∥v∥∥w∥ results in

−1 ≤ v ·w
∥v∥∥w∥

≤ 1 and − ∥v∥∥w∥ ≤ v ·w ≤ ∥v∥∥w∥.

This can be summarized as |v·w| ≤ ∥v∥∥w∥which proves the Cauchy-Schwarz inequality
in general.

For the “Moreover” part, we need to understand under which conditions equality
holds. Going back to the calculations with the unit vectors, we see that the conditions are
precisely 0 = (v−w)(v−w) or 0 = (v+w)(v+w). By positive-definiteness of the scalar
product (Observation 1.10(iv)), this translates to v −w = 0 or v +w = 0.

In other words, the two unit vectors are either the same or opposite vectors. For the
unit vectors v/∥v∥ and w/∥w∥, it is easy to see that this is the case exactly if v and w are
scalar multiples of each other. If equality is due to one of v and w being 0, it’s still true
that one vector (namely 0) is a scalar multiple of the other one.

Here is an application of the Cauchy-Schwarz inequality. Imagine that you have m
squares with total area A, and you put them next to each other as in Figure 1.16. How
much horizontal space do you need at most?

To solve this, let v1, v2, . . . , vm be the side lengths of the squares. Then the horizontal
space needed is

m∑
i=1

vi.
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?

Figure 1.16: Horizontal alignment of m squares with total area A

Let v ∈ Rm be the vector with coordinates v1, v2, . . . , vm. We know that

∥v∥2 =
m∑
i=1

v2i = A.

Furthermore, let 1∈ Rm be the vector with all coordinates equal to 1. We have ∥1∥ =
√
m.

By the Cauchy-Schwarz inequality,
m∑
i=1

vi = 1 · v ≤ ∥1∥∥v∥ =
√
m
√
A,

so we need at most
√
mA horizontal space. If v is a scalar multiple of 1 (meaning that all

squares have the same size), we need exactly
√
mA. Otherwise, we need less.

Exercise 1.13. For the 1-norm and ∞-norm as defined on page 26, prove that the following in-
equalities hold for every vector v ∈ Rm.

∥v∥ ≤ ∥v∥1 ≤
√
m∥v∥

and
∥v∥∞ ≤ ∥v∥ ≤

√
m∥v∥∞.

1.2.4 Angles

In R2 and R3, the angle between two vectors is simply the angle between their arrows;
see Figure 1.17.

v

w
α

Figure 1.17: The angle α between two vectors v and w

As with the length, we are looking for a way to define the angle between two vectors
also in higher dimensions, in such a way that nothing changes inR2 andR3. The Cauchy-
Schwarz inequality is the key here.
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Definition 1.14 (Angle). Let v,w ∈ Rm be two nonzero vectors. The angle between them is the
unique α between 0 and π (180 degrees) such that

cos(α) =
v ·w
∥v∥∥w∥

∈ [−1, 1].

(Here, the interval [−1, 1] = {x ∈ R : −1 ≤ x ≤ 1} comes from the Cauchy Schwarz inequality,
Lemma 1.12). In other words,

α = arccos

(
v ·w
∥v∥∥w∥

)
.

Let’s check that this coincides with the usual concept of angles inR2. As the angle does
not depend on how long the arrows are, and whether we simultaneously rotate them, we
can look at the case where v = e1 and w is another unit vector, with an angle of α between
the arrows; see Figure 1.18.

v = e1

w

α cos(α)

sin(α)
1 ∥v −w∥

1− cos(α)
v = e1

w

α− cos(α)

sin(α)
1

∥v −w∥

1− cos(α)0 0

Figure 1.18: The angle α between two unit vectors in R2. Left: α acute; right: α obtuse

From highschool, we know that the legs of the gray triangle (whose hypotenuse is
∥w∥ = 1) are sin(α) and cos(α) (if α is an acute angle) or − cos(α) (if α is an obtuse angle).
In both cases, the red triangle with hypotenuse ∥v − w∥ therefore has legs sin(α) and
1− cos(α). By the Pythagorean theorem,

∥v −w∥2 = sin2(α) + (1− cos(α))2.

Using sin2(α) + cos2(α) = 1, the right-hand side is 2 − 2 cos(α). By definition of the Eu-
clidean norm, the left-hand side is (v −w) · (v −w), and we have already argued in the
proof of Lemma 1.12 (Cauchy-Schwarz inequality) that this equals 2− 2v ·w. Hence, we
have shown

2− 2v ·w = 2− 2 cos(α)

which simplifies to
cos(α) = v ·w.

This indeed agrees with what Definition 1.14 says for unit vectors.
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Definition 1.15 (Perpendicular vectors). Two vectors v,w ∈ Rm are called perpendicular (a
different term used is orthogonal) if v ·w = 0; in other words, if the cosine of the angle between
them is 0 and the angle itself is 90 degrees.

Figure 1.19 gives an example.

x

y [
4

2

][
−1

2

]
900

[
4
2

]
·
[
−1
2

]
= −4 · 1 + 2 · 2 = 0

Figure 1.19: Perpendicular vectors: the scalar product equals 0.

1.2.5 Triangle inequality

Lemma 1.16. Let v,w ∈ Rm. Then

∥v +w∥ ≤ ∥v∥+ ∥w∥.

In R2, Figure 1.20 shows that this is quite obvious from the parallelogram of vector
addition (Figure 1.4).

v

w

v +w

‖w‖‖v‖

‖v +w‖
0

‖w‖ ‖v‖

Figure 1.20: The triangle inequality: going from 0 directly to v+w is shorter than making
a detour via v or w.

In higher dimensions, the following proof shows that the triangle inequality is nothing
but Cauchy-Schwarz in a different disguise.

Proof. Since both sides of the inequality are nonnegative, we can instead prove the squared
triangle inequality

∥v +w∥2 ≤ (∥v∥+ ∥w∥)2
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and then take square roots on both sides to obtain the triangle inequality. To prove the
squared version, we compute

∥v +w∥2 = (v +w) · (v +w) (Definition 1.11) of the Euclidean norm)
= v · v +w ·w + 2v ·w (Observation 1.10 (iii) on scalar products)
= ∥v∥2 + ∥w∥2 + 2v ·w (Definition 1.11 of the Euclidean norm)
≤ ∥v∥2 + ∥w∥2 + 2|v ·w|
≤ ∥v∥2 + ∥w∥2 + 2∥v∥∥w∥ (Cauchy Schwarz inequality, Lemma 1.12)
= (∥v∥+ ∥w∥)2.

Exercise 1.17. Turn this proof around and derive the Cauchy-Schwarz inequality from the (squared)
triangle inequality!

As a consequence, some sources say that the Cauchy-Schwarz inequality is equivalent
to the triangle inequality; this is another abuse of notation, since any two statements that
are both true are logically equivalent, even if they have otherwise nothing to do with each
other. What is meant here is that the triangle inequality can easily be proved using the
Cauchy-Schwarz inequality (as we did in the proof above), and vice versa, as we ask you
to do in Exercise 1.17.

1.3 Linear independence

Linear independence of vectors is probably the single most important concept of lin-
ear algebra. A sequence of vectors is called linearly independent if none of the vectors
is a linear combination of the others, and linearly dependent otherwise. We provide
a number of alternative definitions of linear (in)dependence that illuminate the con-
cept from different angles. We also introduce the span of a sequence of vectors, the
set of all their linear combinations. Adding some linear combination as a new vector
to the sequence does not change the span.

1.3.1 Definition and examples

Definition 1.18 (Linear (in)dependence). Vectors v1,v2, . . . ,vn are linearly dependent if at
least one of them is a linear combination of the others, i.e. there exists an index k ∈ [n] and scalars
λj such that

vk =
n∑

j=1
j ̸=k

λjvj.

Otherwise, v1,v2, . . . ,vn are linearly independent.
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Here, the additional “j ̸= k” below the sum adds a condition to the j’s considered in
the sum: take only the ones in the given range that satisfy the condition. Hence, the sum
is over all j except k, so the equation indeed says that vk is a linear combination of the
other vectors.

Again, let’s do some examples. The two vectors[
2
3

]
,

[
4
6

]
are linearly dependent, because[

2
3

]
=

1

2

[
4
6

]
or
[
4
6

]
= 2

[
2
3

]
.

We also call these two vectors collinear because they are are on the same line; see Fig-
ure 1.21 (left). In contrast, [

2
3

]
,

[
3
−1

]
are linearly independent, as none of them is a linear combination (scalar multiple) of the
other one; see Figure 1.21 (right).

x

y

[
2

3

]
[
4

6

]

0
x

y

[
2

3

]
[

3

−1

]0

Figure 1.21: Two collinear vectors (left): their linear combinations form a line; two linearly
independent vectors (right)

Let us now consider three vectors in R2. These are always linearly dependent: If two
of them are collinear, one of them is a linear combination of the other one and therefore
of both other ones (pick scalar 0 for the second other one). Otherwise, each of the vectors
is a linear combination of the other two by Challenge 1.6.

What if we have just one vector v ∈ Rm? Can v even be a linear combination of
the other vectors when there are no other vectors? Yes, if v = 0, because 0 is a linear
combination of the empty sequence of vectors (Section 1.1.5). But if v ̸= 0, v is linearly
independent.

Generally, when 0 is one of the vectors, they are automatically linearly dependent,
because 0 is always a linear combination of the other ones, even if there are no other ones.
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Similarly, when some vector appears twice, the vectors are linearly dependent, because
one of the copies is already a linear combination of the other copy.

Finally, what about the empty sequence of vectors? This in turn is linearly indepen-
dent by Definition 1.18: because [n] = ∅ in this case (∅ is the symbol for the empty set),
there is no index k ∈ [n], whatever we may require of it. Table 1.3 summarizes these
examples.

linearly independent linearly dependent[
2
3

]
,

[
3
−1

]
[
2
3

]
,

[
4
6

]
v1,v2,v3 ∈ R2

v ̸= 0
v = 0

. . . ,0, . . .
. . . ,v, . . . ,v, . . .

empty sequence

Table 1.3: Linear (in)depencence of some sequences of vectors

1.3.2 Alternative definitions

There are two more important alternative definitions of linear dependence. The following
lemma provides them. In some sources, (ii) is the “standard” definition of linear depen-
dence.

Lemma 1.19 (Alternative definitions of linear dependence). Let v1,v2 . . . ,vn ∈ Rm. The
following statements are equivalent (meaning that they are either all true, or all false).

(i) At least one of the vectors is a linear combination of the other ones. (This means, the vectors
are linearly dependent according to Definition 1.18.)

(ii) There are scalars λ1, λ2, . . . , λn besides 0, 0, . . . , 0 such that
∑n

j=1 λjvj = 0. We also say
that 0 is a nontrivial linear combination of the vectors.

(iii) At least one of the vectors is a linear combination of the previous ones.

For the proof, we apply the basic principles of logic. We first argue that (i) implies (ii),
meaning that if (i) is true, then also (ii) is true. Logically, this is written as (i)⇒(ii). Next
we prove (ii)⇒(iii) and (iii)⇒(i).
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Having done this, we know that (i), (ii) and (ii) are equivalent: either all true or all
false, written as (i)⇔(ii)⇔(iii). Indeed, because of the three (circular) implications, it can-
not be that one of them is true and another one is false.

In math prose, an equivalence such as (i)⇔(ii) is also written as “(i) if and only if (ii)”.
This summarizes the two implications : “(i) if (ii)” writes out (ii)⇒(i), while “(i) only if
(ii)” excludes the possibilty that (i) is true and (ii) is false. In other words, it writes out the
implication (i)⇒(ii).

Proof.
(i)⇒(ii): If at least one of the vectors, vk say, is a linear combination of the other vectors,

then

vk =
n∑

j=1
j ̸=k

λjvj.

Defining λk = −1, we get

0 =
n∑

j=1

λjvj.

Hence, 0 is a nontrivial linear combination of the vectors (it’s nontrivial because λk ̸= 0).
(ii)⇒(iii): If 0 is a nontrivial linear combination of the vectors, then we can write 0 in

the form

0 =
n∑

j=1

λjvj,

where not all λj are zero. Let k be the largest index such that λk ̸= 0. Then we actually
have

0 =
k∑

j=1

λjvj,

and this can be solved for vk, resulting in

vk =
k−1∑
j=1

(
−λj

λk

)
vj.

Hence, at least one vector, namely vk, is a linear combination of the previous ones.
(iii)⇒(i): If at least one vector is a linear combination of the previous ones, the same

vector is also a linear combination of the other ones (use scalar 0 for vectors after it).

Here are the corresponding alternative definitions of linear independence. These are
simply obtained by taking the opposites of (i)–(iii) in Lemma 1.19: If some statements are
either all true or all false, the same holds for their opposites.

We formulate the resulting definitions as a corollary which is a result that directly fol-
lows from (is implied by) a previous one, without the need for a proof (or only a very
simple proof such as “take the opposites of all statements!”).
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Corollary 1.20 (Alternative definitions of linear independence). Let v1,v2 . . . ,vn ∈ Rm.
The following statements are equivalent (meaning that they are either all true, or all false).

(i) None of the vectors is a linear combination of the other ones. (This means, the vectors are
linearly independent according to Definition 1.18.)

(ii) There are no scalars λ1, λ2, . . . , λn besides 0, 0, . . . , 0 such that
∑n

j=1 λjvj = 0. We also say
that 0 can only be written as a trivial linear combination of the vectors.

(iii) None of the vectors is a linear combination of the previous ones.

This has another important consequence: a linear combination of linearly independent
vectors can be written as a linear combination in only one way.

Lemma 1.21. Let v1,v2 . . . ,vn ∈ Rm be linearly independent, and let v =
∑n

j=1 λjvj =∑n
j=1 µjvj be two ways of writing v as a linear combination. Then λj = µj for all j ∈ [n].

Proof. Subtracting the two linear combinations, we get

0 =
n∑

j=1

(λj − µj)vj.

Since 0 can only be written as a trivial linear combination, we get λj −µj = 0 for all j.

1.3.3 Span of vectors

The set of all linear combinations of some vectors is important enough to deserve a name.

Definition 1.22 (Span). Let v1,v2, . . . ,vn ∈ Rm. Their span is the set of all linear combinations.
In formulas,

Span(v1,v2, . . . ,vn) :=

{
n∑

j=1

λjvj : λj ∈ R for all j ∈ [n]

}
.

As an example, let us consider the span of three vectors v1,v2,v3 in R3. There are
three cases; if you have looked into Challenge 1.6, this will not surprise you. Formally, the
different cases result from analyzing systems of three linear equations in three variables
(which we will not do now).

The span can be a line through the origin (vectors are collinear), a plane through the
origin (vectors are coplanar), or the whole space (vectors are linearly independent). Fig-
ure 1.22 presents examples for all three cases.

The attentive reader might have noticed that there is a fourth (but pretty boring) case:
if v1 = v2 = v3 = 0, then 0 is the only linear combination, so the span is a point at the
origin. Here are some more observations to illustrate the concept.
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 −1

1

1


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3



x
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z

−2

2

0



−1

1

3



−3

3

3


x

y

z

−2

2

0



−1

1

3



 2

3

−1



Figure 1.22: The span of three vectors inR3: a line (left), a plane (middle), the whole space
(right).

We always have 0 ∈ Span(v1,v2, . . . ,vn) (obtained by setting all λj to 0). This even
holds if n = 0 and there are no vectors. As we have argued in Section 1.1.5, 0 is a linear
combination of the empty sequence of vectors (and the only one), so Span() = {0}.

In “span language,” Fact 1.5 can be rewritten as follows:

Span

([
2
3

]
,

[
3
−1

])
= R2.

The span of two nonzero vectors that are scalar multiples of each other is always a
line. For example,

Span

([
2
3

]
,

[
4
6

])
=

{
λ

[
2
3

]
: λ ∈ R

}
.

Figure 1.23 illustrates these two cases.
Next we prove a useful statement that may seem obvious from the examples inR3 but

needs a proof: the span of vectors does not change when we add a linear combination of
them as a new vector.

Lemma 1.23. Let v1,v2 . . . ,vn ∈ Rm, and let v ∈ Rm be a linear combination of v1,v2 . . . ,vn.
Then

Span(v1,v2, . . . ,vn)︸ ︷︷ ︸
S

= Span(v1,v2, . . . ,vn,v)︸ ︷︷ ︸
T

.

To prove that two sets S and T are equal, we can argue that each element of S is
contained in T (then S is a subset of T , in formulas S ⊆ T ) and—vice versa—that each
element of T is contained in S (then T ⊆ S). Having done this, there can’t be an element
which is in one of the sets and not in the other one (same logic as with the implications in
Lemma 1.19), so the two sets must be equal.
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x

y

[
2

3

]
[
4

6

]

0
x

y

[
2

3

]
[

3

−1

]0

Figure 1.23: The span of two vectors in R2: a line (left), or the whole space (right).

Proof.
S ⊆ T : Each element w ∈ S is a linear combination of v1,v2, . . . ,vn and therefore also

a linear combination of v1,v2, . . . ,vn,v (add the scalar multiple 0v). So w ∈ T .
T ⊆ S: each element w ∈ T is a linear combination of v1,v2, . . . ,vn,v,

w =
n∑

j=1

λjvj + λv.

But since v is a linear combination of v1,v2 . . . ,vn, we also have

v =
n∑

j=1

µjvj.

Plugging the second equation into the first one, we get

w =
n∑

j=1

λjvj + λv =
n∑

j=1

λjvj + λ

(
n∑

j=1

µjvj

)
=

n∑
j=1

(λj + λµj)vj.

This means that w is a linear combination of v1,v2, . . . ,vn and hence in S.
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Chapter 2

Matrices

2.1 Matrices and linear combinations
A matrix is a rectangular array of numbers. Upfront, this is just a notation for a
sequence of column vectors (the columns of the matrix), or a sequence of row vectors
(the rows of the matrix). But matrices turn out to be very useful in representing,
arguing about or computing with sequences of vectors and their linear combinations.
Central matrix concepts that we introduce here are matrix-vector multiplication, the
column space, the row space, the transpose, and the rank.

We often work with sequences of vectors. A matrix can be considered as a more com-
pact notation for such a sequence. For example,1 2
3 4
5 6

 is a 3× 2 matrix (3 rows, 2 columns) that represents the sequence

13
5

 ,

24
6


of 2 vectors inR3. Using the matrix, we save brackets and commas, but more importantly,
it naturally represents a second sequence of 3 (row) vectors in R2:

(
[
1 2

]
,
[
3 4

]
,
[
5 6

]
).

Definition 2.1 (Matrix). An m × n matrix is a rectangular array of real numbers with m rows
and n columns. We use upper-case letters (A,B, . . .) to denote matrices, and write their entries
with the corresponding lower case letters and two indices, as in

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn

 .
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Hence, aij is the entry in row i and column j of matrix A. The “dot-free” notation (see also
Section 1.1.5) is

A = [aij]
m n
i=1,j=1.

The set of m× n matrices is denoted by Rm×n.
If we want to talk about the columns of A as column vectors or the rows of A as row vectors,

we use column notation or row notation,

A =

 | | |
v1 v2 · · · vn

| | |


︸ ︷︷ ︸

column notation

, A =



| u1 |

| u2 |

...

| um |


︸ ︷︷ ︸

row notation

.

While a vector needs one dot symbol in “dot notation”, a matrix needs seven. This is
significant enough to use the other notations (dot-free, column, row) more frequently for
matrices.

A column vector v ∈ Rm is an m× 1 matrix, and a row vector u ∈ Rn is a 1×n matrix.
At this point, we have to admit an abuse of notation that we have started much earlier.

While Rm officially contains sequences (x1, x2 . . . , xm) of real numbers, we have silently
also treated column vectors with m entries as elements ofRm. In reality, they are matrices:
elements of Rm×1. But since an m× 1 matrix just contains a sequence of m real numbers,
there is no harm in treating it as an element of Rm as well. The same is true for row
vectors: there is not really a difference between R1×n and Rn. While we are at it, there is
also no problem in treating a 1× 1 matrix as a real number.

Just like vectors, two matrices of the same shape can be added and multiplied with a
scalar, as in the following examples:[

1 2
3 4

]
+

[
5 6
7 8

]
=

[
6 8
10 12

]
, 2

[
1 2
3 4

]
=

[
2 4
6 8

]
.

Definition 2.2 (Matrix addition, scalar multiplication, zero matrix, square matrix). Let
A = [aij]

m n
i=1,j=1 and B = [bij]

m n
i=1,j=1 be m× n matrices, λ ∈ R a scalar.

(i) The matrix A+B := [aij + bij]
m n
i=1,j=1 is the sum of A and B.

(ii) The matrix λA := [λaij]
m n
i=1,j=1 is a scalar multiple of A.

(iii) The matrix [0]m n
i=1,j=1 is the m× n zero matrix, written as 0.

(iv) If m = n (number of rows equals number of columns), then A is a square matrix.

The non-square matrices come in two kinds of shapes, with somewhat unofficial but
intuitive names. We have the tall and skinny matrices with more rows than columns, and
the short and wide matrices with more columns than rows; see Figure 2.1.
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m

n

tall and skinny square short and wide
m > n m = n m < n

Figure 2.1: Matrix shapes

Square matrices are particularly important, and they often have additional properties.
Before we provide the general definitions, we give some 3× 3 examples.1 0 0

0 1 0
0 0 1

 2 0 0
0 4 0
0 0 5

 2 1 0
0 4 7
0 0 5

 2 0 0
1 4 0
0 7 5

 2 1 0
1 4 7
0 7 5


identity diagonal upper triangular lower triangular symmetric
matrix matrix matrix matrix matrix

Definition 2.3 (Square matrix classes). Let A = [aij]
m m
i=1,j=1 be an m × m square matrix. If

j < i, j = i, j > i, then aij is said to be below, on, above the diagonal.

j < i

j > i
j
=
i

(i) If aii = 1 for all i and aij = 0 for all j ̸= i, then A is the identity matrix, denoted (in abuse
of notation) by I in every dimension. A different way of defining I is as

I := [δij]
m m
i=1,j=1.

Here, δij is the Kronecker delta, defined as 1 if i = j and 0 otherwise.

(ii) If aij = 0 for all j ̸= i (entries not on the diagonal are 0), then A is a diagonal matrix.

(iii) If aij = 0 for all j < i (entries below the diagonal are 0), then A is an upper triangular
matrix.

(iv) If aij = 0 for all j > i (entries above the diagonal are 0), then A is a lower triangular
matrix.

(v) If aij = aji for all i, j, then A is a symmetric matrix.
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Note that (ii)-(iv) each require that some entries are zero, but not that the other entries
are nonzero. For example, the zero matrix is at the same time diagonal, upper triangular,
and lower triangular, even though we do not see a “diagonal”, or a “triangle” in it. Also
whenever we say things like “all i”, we mean all applicable i, in this case i ∈ [m].

2.1.1 Matrix-vector multiplication

Here is the efficient “matrix way” of writing down a linear combination as a matrix-vector
multiplication:

7

13
5

+ 8

24
6


︸ ︷︷ ︸
linear combination

=

1 2
3 4
5 6

[7
8

]
.

︸ ︷︷ ︸
matrix-vector product

Definition 2.4 (Matrix-vector multiplication). Let

A =

 | | |
v1 v2 · · · vn

| | |

 ∈ Rm×n, x =


x1

x2
...
xn

 ∈ Rn.

The vector

Ax :=
n∑

j=1

xjvj ∈ Rm

is the product of A and x.

It is important to also understand the product in the other matrix notations.

Observation 2.5. Let

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn

 = [aij]
m n
i=1,j=1 ∈ Rm×n, x =


x1

x2
...
xn

 = [xj]
n
j=1 ∈ Rn.

Then

Ax =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn

 =

[
n∑

j=1

aijxj

]m
i=1

∈ Rm.
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This is in many sources the official definition of matrix-vector multiplication. It does
not explicitly refer to the columns or rows of A but just looks at A as a two-dimensional
array of numbers. This is a very useful definition if we actually want to compute the
product, but it hides our motivation for defining the product as a short notation for a
linear combination.

But we easily see that both definitions say the same, by annotating the columns in
Observation 2.5:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn


v1 v2 · · · vn

, Ax =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn


x1v1 + x2v2 + · · ·+ xnvn

.

An immediate consequence is the following.

Corollary 2.6. Let I be the m×m identity matrix (Definition 2.3). Then Ix = x for all x ∈ Rm.

Finally, we ce can also use row notation of A to define Ax in terms of scalar products.

Observation 2.7. Let

A =



| u1 |

| u2 |

...

| um |

 ∈ Rm×n, x ∈ Rn. Then Ax =


u1 · x
u2 · x

...
um · x


︸ ︷︷ ︸

scalar products

.

This is seen to be correct by annotating the rows in Observation 2.5:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn


u1

u2
...

um

, Ax =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn


u1 · x
u2 · x

...
um · x

.

Figure 2.2 provides another pictorial view, illustrating that if A is an m× n matrix, we
can multiply it with an n-dimensional vector x and obtain an m-dimensional vector Ax
as the result.

2.1.2 Column space and rank

Definition 2.8 (Column space). Let A be an m × n matrix. The column space C(A) of A is
the span (set of all linear combinations) of the columns,

C(A) := {Ax : x ∈ Rn} ⊆ Rm.
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A x Ax

n m=m

n

Figure 2.2: Matrix-vector multiplication, pictorially

Here we use the definition of the matrix-vector product Ax as the linear combination
of the columns with scalars from x; see Definition 2.4. When we consider all possible
vectors x ∈ Rn, we obtain all possible linear combinations (the span) of the columns.
Note that we always have 0 ∈ C(A).

Using the column space, the statement of Fact 1.5 can be written as

C

([
2 3
3 −1

])
= Span

([
2
3

]
,

[
3
−1

])
= R2.

See Figure 1.23 (right) for an illustration. In general, when A is a 2×2 matrix with linearly
independent columns, C(A) = R2 holds; see Challenge 1.6.

A crucial parameter of a matrix is its rank. The rank is defined as the number of
independent columns. A column is called independent if it is not a linear combination of
previous columns.

Definition 2.9 ((In)dependent column and rank of a matrix). Let

A =

 | | |
v1 v2 · · · vn

| | |


be an m × n matrix with columns v1,v2, . . . ,vn. Column vj is called independent if vj is not
a linear combination of v1,v2, . . . ,vj−1. Otherwise, vj is called dependent. The rank of A,
written as rank(A), is the number of independent columns of A.

This means, rank(A) is a number between 0 and n. We have rank(A) = n exactly if
no column is a linear combination of the previous ones. According to Corollary 1.20, this
is the same as saying that the columns are linearly independent. The case rank(A) = 0
happens exactly if A = 0, the zero matrix. Note that for A = 0, already the first column is
a linear combination of the previous ones, because 0 is a linear combination of the empty
sequence of vectors; see Section 1.1.5.

Two more examples (see Figure 2.3) are

rank

([
2 4
3 1

])
= 2, rank

([
2 4
3 6

])
= 1.
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rank

([
2 4
3 1

])
= 2

x

y[
2

3

]
[
4

1

] rank

([
2 4
3 6

])
= 1

x

y[
2

3

] [
4

6

]

Figure 2.3: Ranks of two 2× 2 matrices: 2 when both columns are independent (left), or 1
when only the first column is independent (right)

If we reorder the columns of a matrix, we may get other independent columns. For
example, the two matrices [

2 4
3 6

]
and

[
4 2
6 3

]
have the same columns, but in different order. Each matrix has one independent column,
namely its first one, and these are different. Still, both matrices have the same rank 1. This
is not a coincidence. We will take this up again in the example immediately preceding
Section 4.2.2; a consequence of the results in that section is that the rank of a matrix does
not change when we reorder the columns.

The independent columns of a matrix A are also of interest, because they already span
the column space of A.

Lemma 2.10. Let A be an m × n matrix with r independent columns, and let C be the m × r
submatrix containing the independent columns. Then C(A) = C(C).

By a submatrix of a matrix A, we mean a matrix obtained from A by deleting some
rows and/or columns. Here, C is obtained from A by deleting the dependent columns.

Proof. Let u1,u2, . . . ,ur be the independent columns of A, and w1,w2, . . . ,wn−r the de-
pendent columns (in the same order as they appear in A). We will prove that

Span(u1,u2, . . . ,ur,w1,w2, . . . ,wn−r)︸ ︷︷ ︸
C(A)

= Span(u1,u2, . . . ,ur)︸ ︷︷ ︸
C(C)

.

We first observe that wj is a linear combination of u1,u2, . . . ,ur,w1,w2, . . .wj−1, for all
j. Indeed, by Definition 2.9, a dependent column is a linear combination of the previous
columns in A, and the sequence u1,u2, . . . ,ur,w1,w2, . . .wj−1 contains all those (and pos-
sibly a few extra independent ones). Hence, if we start from the sequence u1,u2, . . . ,ur

and then add w1,w2, . . . ,wn−r one by one, Lemma 1.23 guarantees that the span of the
sequence never changes.
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R

([
2 4
3 1

])
= R2

x

y [
2 4

]
[
3 1

]

R

([
2 4
3 6

])
=
{
c
[
2 4

]
: c ∈ R

}
x

y

[
2 4

]
[
3 6

]

Figure 2.4: Row spaces of two 2 × 2 matrices: the whole plane (top) when the rows are
linearly independent, or a line (botttom) when the rows are linearly dependent

2.1.3 Row space and transpose

Recall that a matrix represents a second sequence of vectors, namely its rows. So we can
also define the row space R(A) of a matrix: the span of its rows. Figure 2.4 illustrates the
row spaces of the matrices from Figure 2.3.

For both matrices, the number of independent columns equals the number of inde-
pendent rows. Is this a coincidence? No! It turns out that this is true for every matrix.
This is quite surprising, and we will prove it in Section 4.3.2.

What we will do here is prepare the ground. We are still missing formal definitions
of row space, independent rows, and potentially of a row rank based on counting inde-
pendent rows. Conceptually, nothing new happens here, and we could easily provide
“row versions” of Definitions 2.8 and 2.9 by essentially copying the “column versions”.
But mathematicians do not like this kind of copy & paste. The more elegant way is to
consider the rows as the columns of another matrix, and thus reduce everything to the
column versions.

This needs the concept of matrix transposition. The transpose A⊤ of a matrix A is an-
other matrix, obtained by “mirroring” A along the diagonal “ ⧹”, the line going through
the diagonal entries a11, a22, . . . of A. Figure 2.5 shows a physical such mirror image and
its mathematical abstraction where we don’t screw up the number and bracket symbols.
The effect of this mirroring is that the rows of A become the columns of A⊤.

Definition 2.11 (Transpose). Let A = [aij]
m n
i=1,j=1 be an m × n matrix. The transpose of A is
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↔
 1 2 3

4 5 6


  
1

2

3

4

5

6  
A =

[
1 2 3
4 5 6

]
↔ A⊤ =

1 4
2 5
3 6



Figure 2.5: Mirroring a matrix along the diagonal, physically and mathematically

the n×m matrix
A⊤ := [aji]

n m
i=1,j=1.

This means, the entry of A⊤ in row i and column j is aji, the entry of A in row j and
column i. Transposing a matrix thus interchanges columns with rows. In particular, we
can use transposition to turn column vectors into row vectors and vice versa, for example13

5

⊤

=
[
1 3 5

]
.

In column and row notation, we therefore have

A =

 | | |
v1 v2 · · · vn

| | |

 ⇔ A⊤ =


| v⊤

1

|

| v⊤
2

|

...
| v⊤

n

|

 ,

A =



| u1 |

| u2 |

...

| um |

 ⇔ A⊤ =

 | | |
u⊤
1 u⊤

2 · · · u⊤
m

| | |

 .

It is easy to see that mirroring twice gives back the original. Also, the symmetric
matrices are exactly the ones that are mirror images of themselves.

Observation 2.12. Let A be an m× n matrix. Then

(A⊤)⊤ = A.

Moreover, a square matrix A is symmetric (Definition 2.3) if and only if A = A⊤.

Now we can define the row space of A simply as the column space of A⊤.

Definition 2.13 (Row space). Let A be an m × n matrix. The row space R(A) of A is the
column space of the transpose,

R(A) := C(A⊤).

Similarly, we could define an independent row of A as an independent column of A⊤,
and the row rank of A as the (column) rank of A⊤, but there is no need to do this anymore.
Using the transpose, we can formulate everything in terms of columns.

46



2.1.4 Rank-1 matrices

As a warmup, we will prove rank(A) = rank(A⊤) for the case where A has rank 1. This
will be a consequence of the following lemma that tells us how rank-1 matrices look like.
Before that, let’s look at an example of a rank-1-matrix:

A =

[
1 2 3
2 4 6

]
.

This matrix has rank 1, since there is only one independent column (the first one), and the
second and third are scalar multiples of it. In this example, there is also one independent
row (the first one), and the second one is a scalar multiple of it.

Lemma 2.14. Let A be an m× n matrix. The following two statements are equivalent.

(i) rank(A) = 1.

(ii) There are nonzero vectors v ∈ Rm,w ∈ Rn such that

A = [viwj]
m n
i=1,j=1.

In dot notation, the rank-1 matrices are therefore exactly the nonzero matrices of the
form 

v1w1 v1w2 · · · v1wn

v2w1 v2w2 · · · v2wn
...

... . . . ...
vmw1 vmw2 · · · vmwm

 .

Proof. (i)⇒(ii): If rank(A) = 1, there is exactly one independent column v ̸= 0 (Defi-
nition 2.9). This means, all columns before v are 0, and all columns after v are scalar
multiples of v. Thus, all columns are scalar multiples of v where at least one scalar (the
one for column v itself) is nonzero. Let w ̸= 0 be the vector of scalars, meaning that
the j-th column of A is wjv. Hence, aij (the entry in row i and column j of A) equals
wjvi = viwj . In other words,

A = [viwj]
m n
i=1,j=1.

(ii)⇒(i): If A = [viwj]
m n
i=1,j=1 for nonzero vectors v,w, then the j-th column of A is wjv.

The first column for which wj ̸= 0 is independent, since v ̸= 0 and all columns before it
are 0; all columns after it are scalar multiples of this independent column (the scalar for
column k is wk/wj). Hence, there is exactly one independent column, so rank(A) = 1.

Corollary 2.15. Let A be an m× n matrix with rank(A) = 1. Then also rank(A⊤) = 1.

Proof. By Lemma 2.14, there are v,w ̸= 0 such that

A = [viwj︸︷︷︸
aij

]m n
i=1,j=1.
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By Definition 2.11 of the transpose,

A⊤ = [vjwi︸︷︷︸
aji

]n m
i=1,j=1 = [wivj]

n m
i=1,j=1,

with w,v ̸= 0. Using Lemma 2.14 “in the other direction,” we have rank(A⊤) = 1.

2.2 Matrix multiplication

Matrix-vector multiplication is only a special case of a more powerful operation,
namely matrix-matrix multiplication that we get to know in this section. This has many
important applications, including matrix decompositions where we write a matrix as
a product of other matrices with the goal of revealing some structural properties. We
present the CR decomposition in this section; others will appear in subsequent chap-
ters.

The matrix-vector product Ax is a short notation for the linear combination of the
columns of A with scalars from x (Definition 2.4).

Often, we consider several linear combinations of the same vectors; as an example,
see Table 1.1 that computes three different linear combinations of two fixed vectors. We
would also like to express this in matrix notation.

So let’s suppose we have some fixed vectors (the columns of A) and several vectors
x1,x2, . . . ,xb of scalars with the resulting linear combinations Ax1, Ax2, . . . , Axb. To com-
pactly represent them, we introduce a matrix B with columns x1,x2, . . . ,xb, and define
the matrix-matrix product AB as the matrix with columns Ax1, Ax2, . . . , Axb.

Definition 2.16 (Matrix multiplication). Let A be an a× n matrix and

B =

 | | |
x1 x2 · · · xb

| | |


an n× b matrix. The a× b matrix

AB :=

 | | |
Ax1 Ax2 · · · Axb

| | |


is the product of A and B.

This allows us to summarize the computations of Table 1.1 in a single matrix multipli-
cation; see Table 2.1.

Some comments are in order here: for AB to be defined, the number of columns of
A needs to match the number of rows of B; this is the number n in the definition. This
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v =

[
2
3

]
,w =

[
3
−1

]
:

λ µ λv + µw

−3 2

[
0

−11

]
1 −1

[
−1
4

]
3 0

[
6
9

]
[
2 3
3 −1

]
︸ ︷︷ ︸

A

[
−3 1 3
2 −1 0

]
︸ ︷︷ ︸

B

=

[
0 −1 6

−11 4 9

]
︸ ︷︷ ︸

AB

Table 2.1: Three linear combinations of two vectors v,w (left), summarized in one matrix
multiplication (right)

comes from the fact that the matrix-vector products Axj are only defined if xj ∈ Rn; see
Definition 2.4. This means, B needs to have n rows. By the same definition, Axj ∈ Ra for
all j, and this also explains why AB is an a× b matrix.

One can define the product AB directly, without referring to matrix-vector multipli-
cation: in order to compute the entry of AB in row i and column j, we take the scalar
product of the i-th row of A and the j-th column of B.

Observation 2.17. Let

A =



| u1 |

| u2 |

...

| ua |

 ∈ Ra×n, B =

 | | |
x1 x2 · · · xb

| | |

 ∈ Rn×b.

Then

AB =


u1 · x1 u1 · x2 · · · u1 · xb

u2 · x1 u2 · x2 · · · u2 · xb
...

... . . . ...
ua · x1 ua · x2 · · · ua · xb


︸ ︷︷ ︸

ab scalar products

= [ui · xj]
a b
i=1,j=1 ∈ R

a×b.

This is because the j-th column of AB is Axj = [ui ·xj]
a
i=1; see Observation 2.7. Finally,

here is the dot-free definition of AB.

Observation 2.18. Let A = [aij]
a n
i=1,j=1, B = [bij]

n b
i=1,j=1. Then

AB =

[
n∑

ℓ=1

aiℓbℓj

]a b

i=1,j=1

.

This is just a different way of writing Observation 2.17, since
∑n

ℓ=1 aiℓbℓj equals ui · xj

(“i-th row of A times j-th column of B”).
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Here are two examples. Let

A =

[
1 2
3 4

]
, B =

[
0 1
1 0

]
.

Then

AB =

[
1 2
3 4

] [
0 1
1 0

]
=

[
1 · 0 + 2 · 1 1 · 1 + 2 · 0
3 · 0 + 4 · 1 3 · 1 + 4 · 0

]
=

[
2 1
4 3

]
(”column exchange in A”)

BA =

[
0 1
1 0

] [
1 2
3 4

]
=

[
0 · 1 + 1 · 3 0 · 2 + 1 · 4
1 · 1 + 0 · 3 1 · 2 + 0 · 4

]
=

[
3 4
1 2

]
(”row exchange in A”)

We see that matrix multiplication is not commutative, since we may have BA ̸= AB.
If A and B are not square matrices, it may happen that AB is defined and BA is not. Or
that both products are defined, but are of different shape.

It’s not hard to understand the situation exactly. For AB to be defined, A must be a×n
and B must be n × b, for some number n. For BA to be defined as well, we also need
a = b. This means, A must be m× n and B must be n×m, for some number m. Then AB
is m ×m and BA is n × n, so both products are square matrices. If m = n, they have the
same shape, otherwise, one is larger than the other; Figure 2.6 provides a pictorial view
of matrix multiplication.

A

m

n
m

n

B

m

m

AB

=

m

n

B

m

n

= n

n

BAA

A

a

n

n

B

a

AB

=

b
b

Figure 2.6: Matrix multiplication, pictorially

An easy but important fact is how matrix multiplication interacts with transposition
(Definition 2.11).

Lemma 2.19. Let A be an a× n matrix and B an n× b matrix. Then

(AB)⊤ = B⊤A⊤.
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Proof. Since B⊤ is a b × n matrix and A⊤ an n × a matrix, the product B⊤A⊤ is a b × a
matrix and therefore has the same shape as (AB)⊤.

Next, we compare the two matrices

(AB)⊤ = [cij]
b a
i=1,j=1 and B⊤A⊤ = [dij]

b a
i=1,j=1

entry by entry. By Definition 2.11 of the transpose, cij is the entry in row j and column i
of AB and therefore the scalar product of the j-th row of A and the i-th column of B; see
Observation 2.17:

cij = (j-th row of A) · (i-th column of B).

By the same observation,

dij = (i-th row of B⊤) · (j-th column of A⊤).

To conclude cij = dij , it remains to note that

(j-th row of A) = (j-th column of A⊤) and (i-th column of B) = (i-th row of B⊤).

As seen before in Corollary 2.6 for matrix-vector multiplication, identity matrices also
have no effect in matrix-matrix multiplications. We leave the proof of this as an (easy)
exercise.

Corollary 2.20. Let I be the m ×m identity matrix. Then IA = A for all m × n matrices, and
AI = A for all n×m matrices.

2.2.1 Everything is matrix multiplication

You may already have realized that matrix-vector multiplication is a special case of matrix
multiplication when we consider the vector as an m× 1 matrix:[

1 2
3 4

]
︸ ︷︷ ︸

2×2

[
1
1

]
︸︷︷︸
2×1

=

[
3
7

]
︸︷︷︸
2×1

.

Similarly, we can now also talk about vector-matrix multiplication involving a row vector:[
1 1

]︸ ︷︷ ︸
1×2

[
1 2
3 4

]
︸ ︷︷ ︸

2×2

=
[
4 6

]︸ ︷︷ ︸
1×2

.

The scalar product of two vectors is another special case when we use the convention
that 1× 1 matrices can be treated as numbers. Writing the first vector as a row vector and
the second one as a column vector, the scalar product becomes a matrix-matrix product:[

1 2
]︸ ︷︷ ︸

1×2

[
3
4

]
︸︷︷︸
2×1

=
[
11
]︸︷︷︸

1×1

= 11.
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This is the reason why the scalar product v ·w is often written as v⊤w. Formally, this is a
matrix multiplication where we treat the resulting 1× 1 matrix as a number.

There is another interesting variant here, the outer product that we get by multiplying
a column vector with a row vector (they don’t have to be of the same dimensions).[

3
4

]
︸︷︷︸
2×1

[
1 2

]︸ ︷︷ ︸
1×2

=

[
3 6
4 8

]
︸ ︷︷ ︸

2×2

.

This provides another way of thinking about rank-1 matrices.

Lemma 2.21. Let A be an m× n matrix. The following two statements are equivalent.

(i) rank(A) = 1.

(ii) There are nonzero vectors v ∈ Rm,w ∈ Rn such that A is their outer product, A = vw⊤.

Proof. By definition of matrix multiplication, A = vw⊤ means that entry aij of A is “the
i-th row of v times the j-th column of w⊤.” The i-th row of v consists of just one number
vi, and similarly, the j-th column of w⊤ has one number wj . Hence, A = vw⊤ is equivalent
to aij = viwj for all i and j, and this in turn is equivalent to the condition for rank 1 in
Lemma 2.14.

Definition 2.16 has introduced matrix multiplication via column notation and matrix-
vector products. Using vector-matrix products, we can also write AB in row notation:



| u1B |

| u2B |

...

| umB |


︸ ︷︷ ︸

AB, row notation

=



| u1 |

| u2 |

...

| um |


︸ ︷︷ ︸

A, row notation

 | | |
x1 x2 · · · xn

| | |


︸ ︷︷ ︸

B, column notation

=

 | | |
Ax1 Ax2 · · · Axn

| | |


︸ ︷︷ ︸

AB, column notation

2.2.2 Distributivity and associativity

While matrix multiplication is not commutative (we may have AB ̸= BA), two other
important laws hold.

Lemma 2.22. Let A,B,C be three matrices such that all sums and products in the following are
defined. Then

(i) A(B + C) = AB + AC and (B + C)D = BD + CD (distributivity);

(ii) (AB)C = A(BC) (associativity).
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Proof. Unfortunately, this requires some work but is at the same time boring. We are
therefore lazy and omit the proof of distributivity (it’s also not that you couldn’t find this
anywhere else). The proof of associativity is a bit more interesting, as it lets us exercise
(and appreciate) the dot-free definition of matrix multiplication; see Observation 2.18.

We define S = (AB)C and compute sij , the entry of S in row i and column j. Then we
do the same with T = A(BC) and check that sij = tij for all i and j.

In order for AB and BC to be defined, we need A ∈ Ra,m, B ∈ Rm,n, C ∈ Rn,c, for
some integers a,m, n, c. Then AB ∈ Ra,n, BC ∈ Rm,c and (AB)C,A(BC) ∈ Ra,c. So both
A(BC) and A(BC) have the same shape.

We know that sij is the i-th row of Q = AB times the j-th column of C, see Observa-
tion 2.18:

sij =
n∑

ℓ=1

qiℓcℓj, where qiℓ =
m∑
k=1

aikbkℓ (i-th row of A times ℓ-th column of B)

by the same logic. Putting this together, we get

sij =
n∑

ℓ=1

(
m∑
k=1

aikbkℓ

)
cℓj =

n∑
ℓ=1

m∑
k=1

aikbkℓcℓj,

using distributivity of the real numbers (“constant factors can be pulled into and out of
sums”).

For tij , the entry of A(BC) in row i and column j, we argue in the same way. With
R = BC, we have

tij =
m∑
k=1

aikrkj, where rkj =
n∑

ℓ=1

bkℓcℓj (k-th row of B times j-th column of C).

Hence,

tij =
m∑
k=1

aik

(
n∑

ℓ=1

bkℓcℓj

)
=

m∑
k=1

n∑
ℓ=1

aikbkℓcℓj.

Now we see that sij and tij only differ in the order of summation, and as addition over
the reals is commutative, we have sij = tij .

We silently used an important technique here, exchange of summation order:
m∑
k=1

n∑
ℓ=1

· · · =
n∑

ℓ=1

m∑
k=1

· · ·

If you haven’t seen this before, it’s useful to look at this in more detail. Both double sums
go through all pairs (k, ℓ) where k goes through the range from 1 to m and ℓ goes through
the range from 1 to n. The only difference is the order. The left double sum goes through
the pairs in the order

(1, 1), (1, 2), . . . , (1, n), (2, 1), (2, 2), . . . , (2, n), . . . .
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This is because the inner sum goes through all ℓ for k = 1, then for k = 2 and so on. In
contrast, the right double sum goes through the pairs in the order

(1, 1), (2, 1), . . . , (m, 1), (1, 2), (2, 2), . . . , (m, 2), . . . .

As a computer science student, you can also think of this in terms of nested loops.
Depending on whether you increase k or ℓ in the outer loop, you will print the pairs (k, ℓ)
in different orders:

/ / ( 1 , 1 ) , ( 1 , 2 ) , . . . , ( 1 , n ) , ( 2 , 1 ) , . . .
for ( i n t k = 1 ; k <= m; k++) {

for ( i n t l = 1 ; l <= n ; l ++) {
/ / p r i n t ( k , l )

}
}

/ / ( 1 , 1 ) , ( 2 , 1 ) , . . . , ( m, 1 ) , ( 1 , 2 ) , . . .
for ( i n t l = 1 ; l <= n ; l ++) {

for ( i n t k = 1 ; k <= m; k++) {
/ / p r i n t ( k , l )

}
}

Figure 2.7 illustrates this for m = 4, n = 3.

k

`

1 2 3 4

1

2

3

k

`

1 2 3 4

1

2

3

Figure 2.7: Different summation orders, same pairs: Outer sum / loop over k (left); outer
sum / loop over ℓ (right)

Knowing that matrix multiplication is associative allows us to write ABC for a prod-
uct of three matrices. As it doesn’t matter whether we compute this as (AB)C or A(BC),
we can as well omit the brackets.

This also works for more matrices and is then called generalized associativity. For ex-
ample, (AB)(CD) = A((BC)D) = · · · = ABCD, so we can again omit the brackets, since
it doesn’t matter where we put them. We will not prove this here (but informally in Sec-
tion 2.3.4) and only point out that it is not obvious. Associativity in Lemma 2.22 only
works for three matrices, and one needs a separate proof for more matrices. There are
several such proofs [War01], but generalized associativity does need a proof.
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2.2.3 CR decomposition

You know the prime factor decomposition of a natural number. For example, this writes
the number 1001 as

1001 = 7 · 11 · 13.
This decomposition tells you something about the “structure” of the number that you
cannot easily tell from just staring at the number.

In linear algebra, it’s mostly matrix decompositions that are of interest. This means,
we want to write a matrix A as a product of other matrices, with the goal of learning more
about A, and potentially speeding up computations involving A.

In this section, we will see a first such decomposition.

Theorem 2.23 (CR decomposition). Let A be an m × n matrix of rank r (Definition 2.9). Let
C be the m × r submatrix of A containing the independent columns. Then there exists a unique
r × n matrix R such that

A = CR.

Before we go to the proof, let us do an example. Consider the rank-1 matrix

A =

[
2 4 6
3 6 9

]
with one independent column (the first one). Then the CR decomposition assumes the
form of an outer product:

A =

[
2
3

]
︸︷︷︸
C,2×1

[
1 2 3

]︸ ︷︷ ︸
R,1×3

.

The columns of R contain the scalars that we need in order to write each column as a
scalar multiple of the first one. In fact, we have already proved that each rank-1 matrix
can be written as an outer product, see Lemma 2.21. Next we show the existence of the
CR decomposition for every matrix A.

Proof. We know that A and C have the same column space (Lemma 2.10), so every column
of A can be written as a linear combination of the columns of C. Moreover, since the
columns of C are linearly independent, the scalars in these linear combinations are unique
(Lemma 1.21). If A has columns v1,v2, . . . ,vn ∈ Rm, we therefore have vj = Cxj for all j,
where xj ∈ Rr is a unique vector of r scalars. This uses that matrix-vector multiplication
is simply another notation for linear combinations; see Definition 2.4. But then we get

A =

 | | |
v1 v2 · · · vn

| | |

 = C

 | | |
x1 x2 · · · xn

| | |


︸ ︷︷ ︸

R∈Rr×n

= CR,

using Definition 2.16 of matrix multiplication.
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So we have a decomposition A = CR. The matrix C contains the independent columns
of A and the matrix R contains the unique scalars that we need in order to write all
columns as linear combinations of the independent columns.

Below is an example. Each of the four columns vj, j = 1, 2, 3, 4, is either independent
(and then vj = 1vj is the unique linear combination), or it is dependent and a unique
linear combination of the previous independent columns.

columns of A
v1 v2 v3 v4

= = = =

A =

1 2 0 3
2 4 1 4
3 6 2 5

 12
3

 24
6

 01
2

 34
5



= = = =

v1 1v1 2v1 3v1

v2

v3 1v3 −2v3

v4

independent? yes no yes no

The resulting CR decomposition is1 2 0 3
2 4 1 4
3 6 2 5


︸ ︷︷ ︸

A, 3×4

=

1 0
2 1
3 2


︸ ︷︷ ︸
C, 3×2

[
1 2 0 3
0 0 1 −2

]
︸ ︷︷ ︸

R, 2×4

.

You can check that the decomposition is correct, but we have not explained how it was
computed. In this example, only the last column of R requires some actual computations:
we need to write a vector as a linear combination of two independent vectors in R2. As
in the proof of Fact 1.5, this boils down to solving a system of two linear equations in
two variables. Easy enough, but if the matrix A is larger, we would need to solve larger
systems in order to compute the CR decomposition. We don’t yet know how to do this.
Also, it is not clear at this point what exactly we learn about A from the decomposition
A = CR.

We will come back to this in Section 3.5.5 where we will rediscover (and also efficiently
compute) the CR decomposition in a different context (Gauss-Jordan elimination). Sec-
tion 4.3 will interpret C and R in yet another context (C: basis of column space, R: basis
of row space).

Exercise 2.24. What are the matrices C and R in Theorem 2.23 if A is an m×m matrix of rank
m (the columns are linearly independent)? What are the matrices C and R if A is the m× n zero
matrix? (The second question also requires you to think about m × 0 and 0 × n matrices. While
these are not extremely relevant in practice, it is good to understand how our definitions and proofs
also work for them.)
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2.3 Matrices and linear transformations
When we multiply an m× n matrix A with a vector x in Rn, we get a “transformed”
vector Ax ∈ Rm. Here, we look at the properties of and the theory behind this (linear)
transformation. Linear transformations are for example used to draw 3-dimensional
objects in 2-dimensional space, and they have many other applications, some of
which we will encounter in subsequent chapters. We will also see that matrix multi-
plication naturally appears when combining different linear transformations.

2.3.1 Matrices as functions

An m × n matrix A can be thought of as “transforming” an input vector x ∈ Rn into an
output vector Ax ∈ Rm. Formally, this transformation is a function from Rn to Rm. The
“from” set is the domain of the function, and the “to” set is its range.

Definition 2.25 (Matrix as function). Let A be an m×n matrix. TA : Rn → Rm is the function
defined by

TA( x︸︷︷︸
∈Rn

) = Ax︸︷︷︸
∈Rm

.

For example, if A =

[
0 1
1 0

]
, then

TA

([
x1

x2

])
=

[
0 1
1 0

] [
x1

x2

]
=

[
x2

x1

]
,

the function that swaps the coordinates of the input vector in R2.

Observation 2.26. Let A be an m× n matrix, x,y ∈ Rn and λ ∈ R. Then

(i) TA(x+ y) = TA(x) + TA(y) and

(ii) TA(λx) = λTA(x).

By combining (i) and (ii), we also get TA(λx+ µy) = λTA(x) + µTA(y).

Proof. After substituting the definition of TA, (i) and (ii) simply say that A(x+y) = Ax+Ay
and A(λx) = λAx. Both equalities easily follow from the rules of vector addition (Defi-
nition 1.1), scalar multiplication (Definition 1.3) and matrix-vector multiplication (Obser-
vation 2.5).

To understand what TA does for a given matrix A, it is useful to not only look at indi-
vidual inputs, but at a whole set of inputs. For a set of input vectors X ⊆ Rn, we define
TA(X) := {TA(x) : x ∈ X} as the set of transformed output vectors. In the following
examples, we see how different TA’s transform the standard unit vectors e1, e2, and a set
X ⊆ R2 (gray L-shaped polygon); see Figure 2.8 (middle). In all examples, the vector
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TA(X)

TA(e1)

TA(e2)

A =

[
1 0
0 3

4

]
←−

X

e1

e2

A =

[
0 1
1 0

]
−→

TA(X)
TA(e1)

TA(e2)

Figure 2.8: Right: Mirroring the input along the diagonal. Left: Stretching the input by a
factor of 3

4
along the second coordinate.

TA(e1) is the first column of A, while TA(e2) is the second column. The gray shape gets
transformed accordingly.

The polygon X has 6 corners and 6 line segments connecting the corners. It is an
infinite set, but to compute TA(X), we only need to apply TA to the corners; the line
segments will follow their two corners. To see this, consider a line segment s connecting
two corners x and y. In Section 1.1.4, we have seen that s is the set of convex combinations
of x and y,

s = {λx+ µy : λ+ µ = 1, λ ≥ 0, µ ≥ 0}.
Hence,

TA(s) = {TA(λx+ µy) : λ+ µ = 1, λ ≥ 0, µ ≥ 0}
= {λTA(x) + µTA(y) : λ+ µ = 1, λ ≥ 0, µ ≥ 0} (by Observation 2.26).

This means, the transformed line segment TA(s) is simply the line segment connecting the
transformed corners TA(x) and TA(y).

For our first example above where TA swaps the coordinates, the geometric effect of
TA is shown in Figure 2.8 (right): Swapping the two coordinates corresponds to mirroring
the input along the diagonal “ ⧸” of the coordinate system.

Figure 2.8 (left) gives an example of stretching, which means to make the input longer
or shorter along some or all of the coordinates. If the stretching factors are the same for all
coordinates, we have a scaling, resulting in a larger or smaller copy of the input.

TA(X)

TA(e1)TA(e2)

A =

[
1√
2
− 1√

2
1√
2

1√
2

]
←−

X

e1

e2

A =

[
1 −1

2

0 1

]
−→

TA(X)

TA(e1)

TA(e2)

Figure 2.9: Right: Shearing the input parallel to the first coordinate. Left: Rotating the
input by 45 degrees.

Figure 2.9 shows an example of a shear, and of a rotation. If A = I , the identity matrix,
then TA is the identity transformation, the function that simply outputs the input, without
transforming it.
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If A is a 2× 3 matrix, then TA is an orthogonal projection fromR3 toR2. Such projections
can be used to draw 3-dimensional objects in 2-dimensional space, for example the cube
in the margin.

You can recognize the cube, although what you really see is just a 2-dimensional im-
age. Figure 2.10 shows how such an image is obtained through a transformation TA.

Applying TA : R3 → R2 with A =

[
2 1 0
0 1 2

]
:

 0
0
0

  1
0
0



 0
0
1



 1
1
1



 1
1
0



 0
1
1



 0
1
0



 1
0
1


−→

[
0
0

] [
2
0

]

[
0
2

]

[
3
3

]

[
3
1

]

[
1
3

]

[
1
1

]
[

2
2

]

x

y

Figure 2.10: Orthogonal projection of a 3-dimensional cube. The left figure shows the 8
corners of the 3-dimensional unit cube as vectors in R3. Two corners are connected in the
cube if they differ in exactly one coordinate. The right figure is a 2-dimensional drawing,
resulting from applying TA to the cube corners (the connections follow the corners). With
different matrices A, we get different drawings; see Figure 2.11 for another drawing.

2.3.2 Linear transformations

After these examples, we are ready to define linear transformations in general.

Definition 2.27 (Linear transformation). Let T : Rn → Rm be a function from Rn to Rm. T
is called a linear transformation if the following two statements hold for all x,y ∈ Rn and all
λ ∈ R.

(i) T (x+ y) = T (x) + T (y) and

(ii) T (λx) = λT (x).

By combining (i) and (ii), it then also holds that T (λx+ µy) = λT (x) + µT (y).
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Applying TA : R3 → R2 with A =

[
2 −1 −1
0 2 −1

]
:

[
0
0

] [
2
0

]

[
−1
2

] [
1
2

]

[
−1
−1

]

[
−2
1

] [
0
1

]

[
1

−1

]

Figure 2.11: Projecting the cube in Figure 2.10 (left) using a different matrix

By Observation 2.26, all functions TA in Definition 2.25 are linear transformations. The
statements (i) and (ii) in Definition 2.27 are called the axioms of a linear transformation. An
axiom is a statement that serves as a starting point for further reasoning and argument.1

What they say is the following: if we want to compute T (x + y), it doesn’t matter
whether we first add the two vectors and then apply T to the result, or whether we first
apply T to both vectors and then add up the results. And in computing T (λx), we can
first scale x by λ and then apply T to the result, but we get the same output when we first
apply T to x and then scale the result by λ.

We can visualize this with commutative diagrams, see Table 2.2. In math jargon, these
are also referred to as diagrams that commute. The arrows in a diagram correspond to
certain operations, and if the diagram commutes, this means that we can follow any path
through the diagram (apply the operations in any order), and the result is always the
same.

Let us look at three examples and two counterexamples of linear transformations. The
function T : Rn → R given by

T (x) =
n∑

i=1

xi

is a linear transformation. We can directly check that the axioms hold, or observe that T
is of the form TA for the 1 × n matrix A =

[
1 1 · · · 1

]
and then use Observation 2.26.

Another (somewhat trivial but still instructive) example is T : Rn → Rm given by

T (x) = 0.

Here, 0 is the m-dimensional zero vector; the axioms of linear transformations obviously
hold, and as before, we could also write T in the form TA for A the m × n zero matrix.

1https://en.wikipedia.org/wiki/Axiom, accessed September 7, 2024
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T
x,y −→ T (x), T (y)

+
y y +

x+ y −→ T (x+ y) = T (x) + T (y)
T

T
x −→ T (x)

·λ
y y ·λ

λx −→ T (λx) = λT (x)
T

Table 2.2: Commutative diagrams for Definition 2.27 (linear transformation): In both
cases, there are two ways to go from the top left to the bottom right, but the result is
the same.

The identity T : Rn → Rn is given by T (x) = x. This is also linear and of the form TA for
A = I , the n× n identity matrix; see also Corollary 2.6.

Slightly changing the first example to

T (x) =
n∑

i=1

|xi| = ∥x∥1

gives the 1-norm of x (see Section 1.2.2). This is no longer a linear transformation. To
show this, we need to find a violation of the axioms. For example, if x ̸= 0 and λ < 0,
then T (λx) > 0 but λT (x) < 0; so axiom (ii) does not always hold.

Slightly changing the second example, we can produce another counterexample. Con-
sider

T (x) = u,

where u ∈ Rm is some fixed nonzero vector. Here, axiom (i), T (x + y) = T (x) + T (y),
always fails, since T (x+ y) = u and T (x) + T (y) = 2u.

As an easy consequence of the axioms, every linear transformation T satisfies

T (λx+ µy) = λT (x) + µT (y),

a point that we have already made in Definition 2.27. This generalizes to arbitrary linear
combinations.

Lemma 2.28. Let T : Rn → Rm be a linear transformation, let x1,x2, . . . ,xℓ ∈ Rn and
λ1, λ2, . . . , λℓ ∈ R. Then

T

(
ℓ∑

j=1

λjxj

)
=

ℓ∑
j=1

λjT (xj).

In words, the function value of a linear combination is the linear combination of the
function values.
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Proof (with dots). We use the axioms (i) and (ii) of linear transformations in Definition 2.27
to obtain

T

(
ℓ∑

j=1

λjxj

)
= T

(
ℓ−1∑
j=1

λjxj + λℓxℓ

)
(i)
= T

(
ℓ−1∑
j=1

λjxj

)
+T (λℓxℓ)

(ii)
= T

(
ℓ−1∑
j=1

λjxj

)
+λℓT (xℓ) .

Doing the same for ℓ− 1, we further get

T

(
ℓ∑

j=1

λjxj

)
= T

(
ℓ−2∑
j=1

λjxj

)
+ λℓ−1T (xℓ−1)︸ ︷︷ ︸

T (
∑ℓ−1

j=1 λjxj)

+λℓT (xℓ) .

Repeating this for ℓ− 2, . . . , 1, we finally obtain

T

(
ℓ∑

j=1

λjxj

)
= T

(
0∑

j=1

λjxj

)
︸ ︷︷ ︸

T (0)

+λ1T (x1) + . . .+ λℓ−1T (xℓ−1) + λℓT (xℓ) =
ℓ∑

j=1

λjT (xj),

because T (0) = T (0x) = 0T (x) = 0 for every x, using axiom (ii).

This proof has the usual dots in λ1T (x1)+ · · ·+λℓ−1T (xℓ−1)+λℓT (xℓ), but also dots of a
different quality, namely the ones in ℓ−2, . . . , 1. These dots indicate a repeating pattern in
the proof itself. In Section 1.1.5, we have seen dot-free notations for sequences and sums
and argued that they are more precise than the ones with the dots; is there also a dot-free
notation for proofs such as the one above? Yes, and this notation is known as proof by
induction, an important proof technique in mathematics. The concept of induction is the
following: suppose we want to prove that some statement holds for all natural numbers
n. For example, that

n∑
j=1

j =
n(n+ 1)

2
.

We first check the base case, meaning that the statement holds for the first natural number
n = 0. Indeed, for n = 0, both sides are 0.

For n > 0, we perform the induction step. This proves an implication: if the statement
holds for the number n − 1 (this is the induction hypothesis), then it also holds for n (this
concludes the induction step). In our example, if the statement holds for n − 1, we can
compute

n∑
j=1

j =

(
n−1∑
j=1

j

)
+ n =

(n− 1)n

2
+ n =

n(n+ 1)

2
.

↑ ↑
induction hypothesis easy calculation
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So if the statement holds for n− 1, it indeed also holds for n.
Once we have completed base case and induction step, we have proved the statement

for all natural numbers. Why is that? We have proved it for the first natural number (base
case), and the induction step lets us conclude that it also holds for the second natural
number (if it holds for the first, then it also holds for the second). So we have proved it
for the second natural number, and the induction step lets us conclude that it also holds
for the third natural number. And so on (these are the dots, but now they don’t appear
in the proof, but in its justification). Every natural number is eventually reached by this
sequence of steps, so we have proved it for all natural numbers. Even though there are
infinitely many natural numbers, every natural number itself is finite, so we eventually
get to it.

Let’s exercise induction for the statement of Lemma 2.28. Here, the natural number is
not called n but ℓ.

Proof (by induction). Base case: For ℓ = 0, the statement reads as T (0) = 0 which we
already saw to be true in the proof with dots. For ℓ > 0, we perform the induction step: if
the statement holds for ℓ− 1, we compute

T

(
ℓ∑

j=1

λjxj

)
= T

(
ℓ−1∑
j=1

λjxj + λℓxℓ

)
(i)
= T

(
ℓ−1∑
j=1

λjxj

)
+ T (λℓxℓ)

(ii)
= T

(
ℓ−1∑
j=1

λjxj

)
+ λℓT (xℓ)

=
ℓ−1∑
j=1

λjT (xj) + λℓT (xℓ) (induction hypothesis)

=
ℓ∑

j=1

λjT (xj).

So if the statement holds for ℓ− 1, it indeed holds for ℓ.

The proof is conceptually the same as the previous one, but replaces “repeating this
for ℓ − 2, . . . , 1” by a single step. Whenever you see a proof using repetitions, or saying
“and so on. . . ”, you can be pretty sure that this an informal proof by induction. There is
nothing wrong with a proof using “and so on”, as long as you can turn it into a formal
proof by induction, if needed.

Looking back at the proof of Lemma 2.10, this was also an induction in disguise, where
we have used “one by one” instead of “and so on” to indicate a repeating step in a proof.

2.3.3 The matrix of a linear transformation

We have seen that every matrix A defines a linear transformation TA (Definition 2.25).
Now we can prove that every linear transformation T : Rn → Rm (Definition 2.27) is of the
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form T = TA for a unique m×n matrix A. This means, linear transformations are in some
sense “the same” as matrices, but provide a different (and very useful) interpretation of
matrices as functions that “do something” (transform input vectors to output vectors).

Theorem 2.29. Let T : Rn → Rm be a linear transformation. There exists a unique m×n matrix
A such that T = TA.

Proof. In order for T = TA to hold, we must have T (ej) = TA(ej) = Aej for all j ∈ [n].
Since Aej is the j-th column of A, the only candidate for A is

A =

 | | |
T (e1) T (e2) · · · T (en)
| | |

 ,

the matrix whose columns are the m-dimensional output vectors that we get when we
apply T to the n-dimensional standard unit vectors as inputs. With this matrix A, we
indeed get

TA(x) = Ax =
n∑

j=1

xjT (ej) = T

(
n∑

j=1

xjej

)
= T (x).

The first equality just applies Definition 2.25, in the second one we use Definition 2.4 of
matrix-vector multiplication with our matrix A as defined above. In the third equality, we
apply Lemma 2.28, and the last one uses that every vector x is a linear combination of the
standard unit vectors, where the scalars are simply the entries of x, as inx1

x2

x3

 = x1

10
0


︸︷︷︸
e1

+x2

01
0


︸︷︷︸
e2

+x3

00
1


︸︷︷︸
e3

.

A consequence of the proof is the following: every linear transformation is completely
determined by its behavior on the standard unit vectors. This also explains why we have
paid special attention to this behavior in Figures 2.8 and 2.9.

2.3.4 Linear transformations and matrix multiplication

If you have so far thought that the definition of matrix multiplication (Section 2.2) is a
bit artificial, linear transformations may change your mind about this. Let’s say we have
two linear transformations TA : Rn → Ra and TB : Rb → Rn. Then we can define a new
function T : Rb → Ra via

T ( x︸︷︷︸
∈Rb

) = TA(TB(x)︸ ︷︷ ︸
∈Rn

)

︸ ︷︷ ︸
∈Ra

,
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i.e. we first apply TB to x and then TA to the result. This operation is known as the
composition of functions.

It is easy to check that T is again a linear transformation, so we know from Theo-
rem 2.29 that there is a matrix C such that T = TC , but what is this matrix? The answer is
that C = AB, the product of A and B!

Lemma 2.30. Let TA : Rn → Ra and TB : Rb → Rn be two linear transformations. Then

TA(TB(x)) = TAB(x) for all x ∈ Rb.

Proof. This is a one-liner:

TA(TB(x)) = TA(Bx) = A(Bx) = (AB)x = TAB(x).

Here, we have used Definition 2.25 for TA, TB, TAB as well as associativity of matrix mul-
tiplication (Lemma 2.22), where we treat x as a b× 1 matrix.

Wit this, we can now also understand generalized associativity of matrix multiplica-
tion (Section 2.2.2). This is the fact that the placement of brackets doesn’t matter in the
product of several matrices; let’s prove (AB)(CD) = A((BC)D) as an example. Using
Lemma 2.30 three times, we get that

T(AB)(CD)(x) = TAB(TCD(x)) = TAB(TC(TD(x))) = TA(TB(TC(TD(x)))).

The initial brackets in (AB)(CD) have disappeared: to compute T(AB)(CD)(x), we simply
apply TD, TC , TB and TA in this order.

Let’s do the same for A((BC)D). We get

TA((BC)D)(x) = TA(T(BC)D(x)) = TA(TBC(TD(x))) = TA(TB(TC(TD(x)))).

In both cases, the result is the same for all x, so TA((BC)D) and TA((BC)D) are the same
functions. With Theorem 2.29, we can conclude that also the matrices must be the same,
hence (AB)(CD) = A((BC)D).

We refrain from stating it as a formal theorem, but if we have a product P of matri-
ces A1, A2, . . . , Ak, with brackets put in an arbitrary manner, then TP (x) is computed by
applying TAk

, TAk−1
, . . . , TA1 in this order, so the result (and therefore also the product P )

does not depend on where the brackets are.

2.3.5 Kernel and Image

For every linear transformation, there are two important sets of vectors.

Definition 2.31 (Kernel and image). Let T : Rn → Rm be a linear transformation. The set

Ker(T ) := {x ∈ Rn : T (x) = 0} ⊆ Rn

is the kernel of T . The set

Im(T ) := {T (x) : x ∈ Rn} ⊆ Rm

is the image of T .
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T : Rn → T (x) Ker(T ) Im(T )
R1

∑n
i=1 xi {x ∈ Rn :

∑n
i=1 xi = 0} R

Rm 0 Rn {0}
Rn x {0} Rn

Table 2.3: Kernel and image of some linear transformations

The image of T is the set of all outputs that T can produce. This is actually a familiar
concept.

Observation 2.32. Let T : Rn → Rm be a linear transformation and A the m × n matrix such
that T = TA (see Theorem 2.29). Then

Im(T ) = C(A),

the column space of A.

This immediately follows from Definition 2.8 of C(A) and T (x) = Ax. In light of this,
some sources also call the column space of A the image of A.

Similarly, the kernel (the set of all inputs that produce output 0) can be expressed as

Ker(T ) := {x ∈ Rn : Ax = 0}.

This is a set that we will later call the nullspace of A (Definition 4.31). Again, some sources
also call this the kernel of A.

Table 2.3 provides kernel and image of the linear transformations that we have con-
sidered as examples on page 60.

Exercise 2.33. Let v ∈ Rm,w ∈ Rn be nonzero vectors and consider the m×n matrix A = vw⊤

(this matrix has rank 1 by Lemma 2.21). Give formulas for Ker(TA) and Im(TA), depending on
the vectors v and w!
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Chapter 3

Solving Linear Equations Ax = b

3.1 Systems of linear equations

How to solve systems of linear equations is one of the foundational problems of linear
algebra. Such systems appear in many applications today and can be very large. One
concrete application that we present is Google’s PageRank algorithm. We introduce
systems of linear equations formally, using matrices and vectors, and we explain
their “computer versions” that are used in computer programs for solving systems
of linear equations.

We have already seen a system of linear equations in Section 0.3:

D = 2S

D = C + 3

D + S + C = 17

With its three equations in three variables, this system encodes three pieces of information
about the ages of three children (Dominik, Susanne and Claudia). Solving the system
means to find values for the variables such that all the equations are satisfied.

In general, systems of linear equations can have arbitrarily many equations and vari-
ables; for a systematic treatment, we write such systems in a standard form, and we use
vectors and matrices to argue about them. In standard form, the variables are called
x1, x2, . . . and appear only left of “=” in the equations. In this form, the system from the
children’s age puzzle is

x1 − 2x2 = 0

x1 − x3 = 3 (3.1)
x1 + x2 + x3 = 17

Here, x1 stands for D, x2 for S and x3 for C.
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Definition 3.1 (System of linear equations). A system of linear equations in m equations
and n variables x1, x2, . . . , xn is of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm,

where the aij and bi stand for known real numbers, and the xi stand for unknown real numbers
that we want to compute such that they satisfy all the equations. In matrix-vector form, this can
be written as

Ax = b :


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn


︸ ︷︷ ︸

A, m×n


x1

x2
...
xn


︸ ︷︷ ︸
x∈Rn

=


b1
b2
...
bm


︸ ︷︷ ︸
b∈Rm

.

(Here we use matrix-vector multiplication in the form of Observation 2.5.)A is the coefficient
matrix, b is the right-hand side, and x is the vector of variables. Solving the system means to
compute a vector x ∈ Rn such that Ax = b.

In the form Ax = b, system (3.1) reads as1 −2 0
1 0 −1
1 1 1


︸ ︷︷ ︸

A

x1

x2

x3


︸ ︷︷ ︸

x

=

 0
3
17


︸ ︷︷ ︸

b

.

In this language, we can formulate linear independence of the columns of a matrix A
in the following way. x

Observation 3.2. Let A be an m × n matrix. The columns of A are linearly independent if and
only if the system Ax = 0 has a unique solution, x = 0.

Proof. By Definition 2.4 of matrix-vector multiplication, the solutions are precisely the
vectors of scalars that express 0 as a linear combination of the columns. A unique solu-
tion means that 0 can only be written as a trivial linear combination of the colums. By
Lemma 1.19, this is equivalent to the columns of A being linearly independent.

3.1.1 The PageRank algorithm

As an example where (large) systems of linear equations come up, we will discuss the
PageRank algorithm. This algorithm was published by the Stanford students Sergey Brin
and Lawrence Page in 1998 [BP98, pp. 109-110]. The first sentence of the abstract is the
following:
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In this paper, we present Google, a prototype of a large-scale search engine
which makes heavy use of the structure present in hypertexts.

The rest is history.
To understand what PageRank does, let’s look at an example. Figure 3.1 shows a link

graph where the circles represent web pages and the arrows indicate links between them.
For the whole internet, you can think of a similar figure with a billion (109) circles.

2

1

3

4 5 6

Figure 3.1: A link graph. The circles represent web pages, and an arrow from page p
to page q indicates that p has a link to q. The PageRank algorithm sorts the pages by
relevance.

Which of the six pages shown in Figure 3.1 do you think is most relevant? It’s not clear
what we mean by that, so let’s start by measuring relevance in terms of the number of
links pointing to a page. These are also called citations of the page. In scientific literature,
the number of citations that a paper has is indeed an established measure of relevance, so
it seems natural to also apply it to web pages.

This has been done long before PageRank, and according to this measure, page 2 (with
4 citations) is clearly the most relevant one; all other pages have at most 2 citations.

The main insight behind PageRank is that not all citations are worth the same. Here
are the two key points.

1. Citations from relevant pages should count more than citations from irrelevant ones.
It is too easy to collect many citations from irrelevant pages created for that purpose.

2. If a page cites a large number of other pages, an individual citation on that page
should count less. It is too easy to cite many random pages.

In both points, web page citations fundamentally differ from scientific citations, where
it is not so easy to manipulate citation counts in the described way (although it has be-
come easier with predatory publishers that do not enforce quality standards).

Point 2 is easy to incorporate into the relevance measurement by simply giving less
weight to citations from pages that cite many other pages. How to address point 1 is less
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clear. We want to define the relevance of a page depending on the relevances of the pages
that cite it, but this definition goes in circles. In Figure 3.1, page 2 cites page 3 which cites
page 5 which cites page 2.

A system of linear equations comes to the rescue. Let’s focus on the situation in Fig-
ure 3.1 and introduce variables x1, x2, . . . , x6 for the relevances of pages 1, 2, . . . , 6.

We concretely define the relevance of a page as the sum of the weighted relevances of
the pages that cite it, where the weighted relevance of a page is its relevance, divided by
the number of citations on the page (this addresses point 2). Putting this in formulas for
the relevance of page 2, we get the linear equation

x2 =
x1

2
+ x4 + x5 +

x6

4
.

We have contributions from each of the four pages that cite page 2. For page 6, the
weighted relevance is only x6/4, because page 6 cites 4 pages. Repeating this for all pages,
we obtain a system of 6 equations in 6 variables.

Unfortunately, setting all the xj to 0 is a solution from which we learn nothing. To
avoid this, PageRank introduces a damping factor 0 < d < 1 and replaces the equation for
x2 (and all others in the same way) by

x2 = (1− d) + d
(x1

2
+ x4 + x5 +

x6

4

)
.

For d = 1, we get the previous system with the useless all-zero solution, but for d < 1, it
can be proved that the system has a unique solution with all page relevances summing
up to the number of pages. Brin and Page suggest to use d ≈ 0.85. Using d = 7/8, the
relevances (which are then called page ranks) can be computed for example by pasting
the following code into Wolfram Alpha.1

solve(
d=7/8,
x1=(1-d)+d*(x6/4),
x2=(1-d)+d*(x1/2+x4+x5+x6/4),
x3=(1-d)+d*(x1/2+x2),
x4=(1-d)+d*(x6/4),
x5=(1-d)+d*(x3/2+x6/4),
x6=(1-d)+d*(x3/2)
)

The solution (rounded to five digits) is

x1 = 0.31797, x2 = 1.6761, x3 = 1.7307, x4 = 0.31797, x5 = 1.0751, x6 = 0.88217.

This means, according to PageRank, page 3 is actually the most relevant one, followed by
pages 2, 5, 6. Pages 1 and 4 are the least relevant ones, with the same low page rank.

How to solve systems of linear equations like that efficiently will be the focus of this
chapter.

1https://www.wolframalpha.com/
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3.1.2 Computer vectors and matrices

Systems of linear equations are solved by algorithms, stepwise procedures to solve a given
problem. We explain the algorithms with examples and give mathematical proofs of cor-
rectness, but in one case, we also present the full algorithm in computer code that can
directly be used in Java and C++ programs, for example.

For this, we first need to understand how matrices and vectors are represented in a
computer program. While the details depend on the programming language being used,
the concept is common to many languages. We introduce the concept here on a somewhat
abstract level (but it directly works like that in Java and C++).

A vector such as the right-hand side b is represented by an array. For a vector b ∈ Rm,
we use an array named b with entries b[0], b[1], . . . , b[m− 1]. We can visualize b as

b =


b[0]
b[1]

...
b[m− 1]


and call it a computer vector. Array indices start from 0, not from 1, this is the main thing
one needs to get used to with arrays. The reason for this is that an array typically occupies
a contiguous chunk of computer memory, starting at the memory location of its first entry.
The index of an entry tells us how many locations “further to the right” the entry is. As
the first entry is 0 locations further to the right, it consequently has index 0.

A matrix such as the coefficient matrix A is represented by a two-dimensional array. This
is an array of arrays. For a matrix A ∈ Rm×n, we use an array named A with m entries
A[0], A[1], . . . , A[m− 1] that are itself arrays with n entries each, representing the rows of A.
This can be visualized as

A =



| A[0] |

| A[1] |

...

| A[m− 1] |


and called a computer matrix in row notation. Sometimes, it makes sense to interpret the
entries of A as the columns of A, but rows are better aligned with our understanding of a
matrix entry aij as being in row i and column j. Indeed, if we visualize row A[i] of our
computer matrix as

A[i] =
[
A[i][0] A[i][1] · · · A[i][n− 1]

]
,

we get that A[i][j] is the entry of A in row i and column j (both counting from 0).
In a full computer program, the entries of computer vectors and matrices also have

types that encode what kind of numbers they represent. To represent real numbers on a
computer, one typically uses floating-point numbers, and the corresponding types tend to
be called float and double (standing for double precision). But floating-point numbers
only approximate real numbers, and the problems with that are studied in numerical anal-
ysis. Here, we abstract from this issue and do not talk about types. In writing down the
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algorithms, we simply pretend that entries of computer vectors and matrices are also real
numbers.

3.2 Gauss elimination
We present Gauss elimination, the classical algorithm for solving systems of m equa-
tions in the same number m of variables. Our version does not always work, but
is particularly simple and provides important insights into the structure of the coef-
ficient matrix A. As we show, the algorithm works exactly when the matrix A has
linearly independent columns. We will also count the number of steps that the algo-
rithm performs.

For this section, we restrict to the case where the system Ax = b has a square coef-
ficient matrix, i.e. A is assumed to be an m × m matrix. This is the important case of
“m equations in m variables.” For example, the PageRank algorithm described in Sec-
tion 3.1.1 needs to solve a system of this kind. The general case of arbitrary A will be
treated in Section 3.5.

3.2.1 Back substitution

We start with an easy case: if A is upper triangular (Definition 2.3 (iii)), the system Ax = b
can be solved by back substitution. Let’s look at a 3× 3 example:2 3 4

0 5 6
0 0 7

x1

x2

x3

 =

1917
14

 .

Here, the blue entries are the ones that need to be zero in an upper triangular matrix. Due
to this matrix shape, equation 3 has only variable x3:

7x3 = 14.

We can solve this directly and get x3 = 2. Equation 2 has variables x2 and x3, but as
we already know the value of x3, we can substitute x3 with this value and then directly
solve for x2. In equation 1, we finally have all three variables, but if we substitute x2 and
x3 with their already known values, we can directly solve for x1 and are done.

Table 3.1 summarizes the steps.
If A is an upper triangular m×m matrix, this works in the same way. We go through

the equations in backwards order m,m− 1, . . . , 1. Equation i reads as

m∑
j=i

aijxj = bi.
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equation before substitution after substitution solution
1 2x1 + 3x2 + 4x3 = 19 2x1 + 11 = 19 x1 = 4
2 5x2 + 6x3 = 17 5x2 + 12 = 17 x2 = 1
3 7x3 = 14 x3 = 2

x
Table 3.1: Back substitution in an upper triangular system of 3 equations in 3 variables

We already know the values for xi+1, . . . , xm from the equations below. So we can substi-
tute these variables with their values and then directly solve for xi, giving us

xi =
bi −

∑m
j=i+1 aijxj

aii
.

But this only works if the diagonal entry aii is nonzero, since we have to divide by it.
This means, we need an upper triangular matrix where all diagonal entries are nonzero.
Table 3.2 provides the algorithm in computer code. Note that the row and column indices
are between 0 and m − 1, in agreement with the convention on computer vectors and
matrices that we have discussed in Section 3.1.2.

1 for ( i = m−1; i >= 0 ; i −−) {
2 sum = b [ i ] ;
3 for ( j = i +1; j < m; j ++)
4 sum −= A[ i ] [ j ] * x [ j ] ;
5 x [ i ] = sum / A[ i ] [ i ] ;
6 }

Table 3.2: The back substitution algorithm in computer code. The syntax is Java / C++.

3.2.2 Elimination

If the input matrix A is not upper triangular, elimination is trying to transform the system
Ax = b into an equivalent system Ux = c where U is an upper triangular matrix. Equiv-
alent means that both systems have the same solutions. If elimination succeeds, we can
solve Ux = c using back substitution and obtain a solution of Ax = b.

Elimination transforms the system step by step. Again, we demonstrate this with a
3× 3 example where

A =

2 3 4
4 11 14
2 8 17

 ,b =

1955
50

 . (3.2)

We would like to turn the three red nonzero entries into zeros so that the matrix becomes
upper triangular. We do this column by column, from left to right. To get rid of the 4, we
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subtract 2 · (equation 1) from equation 2 of the system:

(equation 2) : 4x1 + 11x2 + 14x3 = 55
− 2 · (equation 1) : 4x1 + 6x2 + 8x3 = 38

(equation 2’) : 5x2 + 6x3 = 17

This eliminates variable x1 from the second equation, and we obtain an updated system
A′x = b′ with a new second equation, given by

A′ =

2 3 4
0 5 6
2 8 17

 ,b′ =

1917
50

 .

In this step, x is just a distraction, all that matters are the entries of A and b. To get A′

from A, we subtract 2 · (row 1) from (row 2). The same operation transforms b to b′ (here,
a row is just a single number).

Subtracting a multiple of some row from another row is a row subtraction. This can
also be viewed as a linear transformation applied to all columns of A, and to b. We
further know that each linear transformation comes from a matrix; see Section 2.3.3. In
our example, the transformation is

TE21

v1v2
v3

 =

 v1
v2 − 2v1

v3

 =

 1 0 0
−2 1 0
0 0 1


︸ ︷︷ ︸

E21

v1v2
v3

 .

Hence, matrix and right-hand side of the transformed system A′x = b′ can be computed
as

A′ = E21A, b′ = E21b, E21: ”subtract 2·(row 1) from (row 2)”.

E21 is called an elimination matrix. Generally, we use Eij to denote an elimination matrix
that is supposed to create a zero entry in row i and column j.

To argue that this transformation does not change the solutions, we need that it can be
undone:

A = E ′
21A

′, b = E ′
21b

′, E ′
21: ”add 2·(row 1) to (row 2)”.

In the 3× 3 case, the matrix for this row addition is

E ′
21 =

1 0 0
2 1 0
0 0 1

 .

Now it easy to see that the two systems Ax = b and A′x = b′ have the same solutions.
First, if Ax = b, then

A′x = E21Ax = E21b = b′.
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So every solution of Ax = b is also solution of A′x = b′. And if A′x = b′, then

Ax = E ′
21A

′x = E ′
21b

′ = b.

So every solution of A′x = b′ is also solution of Ax = b.
Continuing from A′,b′, there are two more steps to turn the remaining two red entries

into zeros; in each step, the diagonal entry of the current column is used to eliminate the
nonzeros below it. This entry is called the pivot. Table 3.3 summarizes all three steps. The
result is precisely the system in upper triangular form that we have previously solved
with back substitution in Section 3.2.1. As solutions never change during elimination,

x =

41
2


also solves the original system (3.2) (check this!).

fat number: the pivot A =

2 3 4
4 11 14
2 8 17

 b =

1955
50


subtract 2·(row 1) from (row 2): ↓ ↓

E21 =

 1 0 0
−2 1 0
0 0 1

 E21A =

2 3 4
0 5 6
2 8 17

 E21b =

1917
50


subtract 1·(row 1) from (row 3): ↓ ↓

E31 =

 1 0 0
0 1 0
−1 0 1

 E31E21A =

2 3 4
0 5 6
0 5 13

 E31E21b =

1917
31


subtract 1·(row 2) from (row 3): ↓ ↓

E32 =

1 0 0
0 1 0
0 −1 1

 E32E31E21A︸ ︷︷ ︸
U

=

2 3 4
0 5 6
0 0 7

 E32E31E21b︸ ︷︷ ︸
c

=

1917
14


↑ elimination matrices done!

Table 3.3: Elimination reduces a system of linear equations to upper triangular form. The
red entries are the ones that must become 0 (blue entries).

Row exchanges. In a less nice case, it can happen that the pivot is 0 which we cannot
use to eliminate nonzeros below it. But if there is some nonzero entry anywhere below
the pivot, we can perform a row exchange to obtain a nonzero pivot. Table 3.4 gives an
example for this situation. Here, we are immediately done after the row exchange, but in
general, we would now use the new nonzero pivot to eliminate the nonzeros below.
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A =

2 3 4
4 6 14
2 8 17

 b = · · ·

elimination in first column: ↓ ↓

E31E21A =

2 3 4
0 0 6
0 5 13

 E31E21b = · · ·

pivot 0: exchange (row 2) and (row 3): ↓ ↓

P23 =

1 0 0
0 0 1
0 1 0

 P23E31E21A︸ ︷︷ ︸
U

=

2 3 4
0 5 13
0 0 6

 P23E31E21b︸ ︷︷ ︸
c

= · · ·

↑ permutation matrix done!

Table 3.4: Elimination with row exchanges to ensure nonzero pivots

A row exchange can also be interpreted as a linear transformation; its matrix is a spe-
cial permutation matrix. In general, a permutation matrix corresponds to a permutation, a
linear transformation that reorders the entries of its input vector. A row exchange is a
special permutation that only exchanges two entries. As before with row subtractions,
we can argue that a row exchange does not change the solution of the linear system of
equations. Here, this is even more obvious, as a row exchange simply corresponds to
exchanging the order of equations.

Failure. Finally, there is an ugly case: the pivot is 0, and all entries below it are also 0, so
that no row exchange helps and we are stuck. Table 3.5 shows an example. In this case,
we give up for now. We also consider it ugly if this happens in the last column; see the
right example in Table 3.5.

A =

2 3 4
4 6 14
2 3 17

 b = · · ·

elimination in first column: ↓ ↓

E31E21A =

2 3 4
0 0 6
0 0 13

 E31E21b = · · ·

no row exchange helps, give up for now!

2 3 4
0 5 6
0 0 0


we also

fail here!

Table 3.5: Elimination fails: no row exchange can ensure a nonzero pivot.

From a purely functional point of view, there would be no reason to give up. After
all, the goal of the elimination steps is to remove the zeros below the diagonal; if in some
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column, we start with only zeros below the diagonal, we could consider this column done
and move on to the next one. Indeed, this works and transforms any square matrix A to
an upper triangular matrix U , possibly with some 0’s on the diagonal. Back substitution
becomes a bit more tricky, then (there might be no solutions, or many solutions of Ux = c),
but this can be handled. In many sources, Gauss elimination is presented like that for all
matrices A, even for non-square ones.

When we give up, this is not laziness. Distinguishing success and failure in Gauss
elimination will allow us to exactly understand the “good” square matrices, the ones
for which we succeed. This kind of understanding provides important insights, so we
prefer to call it (mathematically) lazy to run a version of Gauss elimination that always
succeeds. But once we have understood success and failure, we will make sure to also
develop methods that always succeed; see Section 3.5.

Gauss elimination in computer code. The code for Gauss elimination (with row sub-
tractions and row exchanges) is given in Table 3.6. The code transforms A and b in place,
meaning that the entries of the arrays A and b are being changed so that they in the end
correspond to an equivalent upper triangular system.

The code corresponds to the previous discussion, but there are two points to notice:
in subtracting a multiple of the pivot row j from some row i below, we only update the
entries in columns j, j+1, . . . ,m of row i: in all columns further to the left, there is nothing
to do, since row j has zero entries there, created in previous elimination steps. Also, the
entry A[i][j] becomes zero by design, so there is no need to compute it. The second point
is that elimination in the last column does not perform any actual work, but still checks
whether the entry in the lower right corner of the matrix is nonzero. At this point, we
catch the ugly corner case mentioned in Table 3.5 (right).

3.2.3 Success and failure

In the previous section, we have seen that Gauss elimination may have to give up in
solving a system of m linear equations in m variables. This seems unsatisfactory, and in
reading other sources, you find variants of Gauss elimination that always succeed.

Here, we do not want to fix the algorithm but understand why it is broken. The in-
sights gained through this will also take us further along in the theory of linear algebra.
So we rather like to think of giving up as a productive failure [Kap14].

We have argued (in the examples) that each step of Gauss elimination transforms the
current system of linear equations into another one with the same solutions. This property
is very important to guarantee that by solving the upper triangular system that we get in
the end, we also solve the original system.

Now, we want to make this argument in general, for systems of m equations in n
variables. In this case, the elimination matrix corresponding to a row substraction is an
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1 for ( j = 0 ; j < m; j ++) {
2 / / e l i m i n a t e in column j
3 i f (A[ j ] [ j ] == 0) {
4 / / z e r o p i v o t , t r y row exchange
5 k = j +1;
6 while ( k < m && (A[ k ] [ j ] == 0 ) ) k++;
7 i f ( k == m)
8 return f a l s e ; / / no row exchange i s p o s s i b l e , g i v e up
9 e lse {

10 / / exchange rows j and k . . .
11 row A = A[ j ] ; A[ j ] = A[ k ] ; A[ k ] = row A ; / / . . . o f A
12 row b = b [ j ] ; b [ j ] = b [ k ] ; b [ k ] = row b ; / / . . . o f b
13 }
14 }
15 / / c r e a t e z e r o s be low A[ j ] [ j ]
16 for ( i = j +1 ; i < m; i ++) {
17 / / s u b t r a c t c * row j from row i . . .
18 c = A[ i ] [ j ] / A[ j ] [ j ] ;
19 A[ i ] [ j ] = 0 ;
20 for ( k = j +1; k < m; k++)
21 A[ i ] [ k ] −= c * A[ j ] [ k ] ; / / . . . o f A
22 b [ i ] −= c * b [ j ] ; / / . . . o f b
23 }
24 }
25 return true ;

Table 3.6: The Gauss elimination algorithm in computer code. The return value indicates
whether the elimination was successful.

m×m matrix Eij of the form

Eij =


⧹

1
⧹

−c 1
⧹


← j

← i

↑ ↑
j i

Here ⧹ stands for a contiguous sequence of diagonal 1’s, and all omitted entries are 0.
Hence, Eij is the identity matrix with an extra−c in row i and column j. You can convince
yourself (using the rules of matrix-vector multiplication; see Section 2.1.1) that this is
indeed the matrix of the linear transformation “subtract c·(row j) from (row i).” Applying
it to all columns of A and to b, we get a new system A′x = b′ with A′ = EijA,b

′ = Eijb.
A permutation matrix as it appears in Gauss elimination for a row exchange has the
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form

Pjk =


⧹

0 1
⧹

1 0
⧹


← j

← k

↑ ↑
j k

This is the matrix of the linear transformation “exchange (row j) and (row k),” and if we
apply this row exchange, we get a new system A′x = b′ with A′ = PjkA,b

′ = Pjkb.
A row operation is either a row subtraction, or a row exchange, and the matrix of a row

operation is called the row operation matrix. We can now prove the following result.

Lemma 3.3. Let Ax = b be a system of m linear equations in n variables, and let M ∈ Rm×m be
a row operation matrix. Let A′ = MA and b′ = Mb be the result of applying the row operation
to both A and b. Then the two systems Ax = b and A′x = b′ have the same solutions.

Proof. This works as in the 3× 3 examples: If Ax = b, then

A′x = MAx = Mb = b′.

For the other direction, let M ′ be the matrix of the row operation that undoes M , i.e.
transforms A′ and b′ back to A and b, by either adding back c · (row j) to (row i), or by
exchanging row j and row k again. Now, if A′x = b′, then

Ax = M ′A′x = M ′b′ = b.

Hence, every solution of Ax = b is a solution of A′x = b′ and vice versa.

Corollary 3.4. Let A be an m × n matrix, let M ∈ Rm×m be a row operation matrix, and let
A′ = MA be the result of applying the row operation to A. Then A has linearly independent
columns if and only if A′ has linearly independent columns.

Proof. We apply Lemma 3.3 with b = 0 (and hence b′ = 0 as well). This gives us that
Ax = 0 and A′x = 0 have the same solutions. If there is just one solution, namely the
zero vector, we get linearly independent columns in both cases. If there is also another
solution, we get linearly dependent columns in both cases; see Observation 3.2.

Now we can understand exactly when Gauss elimination succeeds.

Theorem 3.5. Let Ax = b be a system of m linear equations in m variables. The following two
statements are eqivalent.

(i) Gauss elimination as in Table 3.6 succeeds.

(ii) The columns of A are linearly independent.
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We will prove (i)⇒(ii) “normally”, but (ii)⇒(i) (“if (ii), then (i)”) is easier to prove by
contraposition. This proves the logically equivalent implication “if not (i), then not (ii)”.
You know this from natural language. Consider the sentence “If it rains, then the street
is wet.” Another (logically equivalent) way of saying this is “If the street is not wet, then
it does not rain”. The symbol for not (logical negation) is ¬, so the contraposition can be
written as ¬(i)⇒ ¬(ii).

Proof. (i)⇒(ii): If Gauss elimination succeeds, it produces an upper triangular matrix U
with all diagonal entries ujj nonzero. Such a matrix U has linearly independent columns:
no column is a linear combination of the previous ones, due to the nonzero diagonal
elements (and zeros to the left of them). Recall Corollary 1.20 (iii) for this alternative
definition of linear independence. Hence, also A has linearly independent columns by
Corollary 3.4 (applied throughout all elimination steps).
¬(i)⇒ ¬(ii): If Gauss elimination fails in column j, we have an intermediate matrix A′

with zeros in rows j, j + 1, . . . ,m of column j. But in all previous columns, elimination
succeeded, and the diagonal entries are nonzero. Hence, A′ looks like this:

A′ =

[
U v · · ·
0 0 · · ·

]
, U ∈ R(j−1)×(j−1) upper triangular, all uℓℓ ̸= 0, v ∈ Rj−1.

From this, we construct a nonzero solution x to A′x = 0, showing that A′ (and hence also
the original A, by repeated application of Corollary 3.4) has linearly dependent columns.
We start by setting xj+1, xj+2, . . . , xm = 0.

This already ensures that the vector A′x has zeros in rows j, j + 1, . . . ,m, and to get
A′x = 0, we also need zeros in the first j − 1 rows, meaning that

U


x1

x2
...

xj−1


︸ ︷︷ ︸

y

+xjv = 0.

This can be achieved for example by setting xj = −1 and solving Uy = v by back substi-
tution; see Section 3.2.1.

You may wonder whether this proof also works (or how it is to be interpreted) if Gauss
elimination already fails in the first column (j = 1). In this case, the complete first column
of the original matrix A is 0, and hence, the columns are linearly dependent for obvious
reasons; see also Table 1.3 and the discussion before it.
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3.2.4 Runtime

Whenever computer scientists see an algorithm, they ask how efficient it is. For any given
problem, there are different algorithms, and they may differ in their efficiency. Naturally,
we would like to identify the most efficient one. But in order to do so, we must first
define and measure the efficiency of an algorithm. The most important measures are
runtime and memory consumption. Here, we focus on runtime. But how do we measure
this?

Suppose we are given a concrete system of linear equations, for example the one on
page 70 that we previously fed into Wolfram Alpha to compute page ranks for the “toy
internet” of Figure 3.1.

Now we know how we can solve it ourselves, using Gauss elimination with back
substitution as an algorithm, as realized for example by the lines of code in Tables 3.6
and 3.2.

If we integrate these lines of code into a concrete computer program and run it on a
concrete computer, we can measure the time it takes to solve our concrete system of linear
equations. What we get is a number (in milliseconds, for example). On a different system
of linear equations, and on a different computer, we will get a different number. So this
kind of measurement is not very informative.

What we do instead is the following: we inspect the algorithm, identify the crucial
steps, and try to count how many of them the algorithm makes, depending on m. This
results in a function g : N→ N, where g(m) is the number of crucial steps needed to solve
a system with m linear equations in m variables. If the “crucial steps” account for most
of the steps in the algorithm, g(m) is also a good estimate for the algorithm’s efficiency in
terms of the total number of steps. This measure is independent of the computer that we
will actually use to run the algorithm.

Here, the crucial steps are the arithmetic steps: how often does the algorithm add, sub-
tract, multiply, or divide two numbers? On top of this, there are clearly other steps, but
only rather simple ones, and not many more than arithmetic steps. For example, in sub-
tracting a multiple of a row from another row (lines 20–22 in Table 3.6), the algorithm
performs (m− j) multiplications and (m− j) subtractions. On top of this, there are extra
steps: initialize a loop variable, check whether the loop is done, change a loop variable,
change an array entry. But each of these extra steps also happens at most m− j times.

Generally, we want to argue that for each arithmetic step, only a couple of extra steps
are needed. This makes sense, since the main task is computation, and everything else
should only be there to support the main task. To formalize this, we can imagine each
step to cost CHF 1 each. The arithmetic steps have to pay not only for themelves, but also
bear the cost of the extra steps. If we can charge the extra steps to the arithmetic steps
in such a way that each arithmetic step pays at most CHF 10, say, then we know that the
total number of steps is at most 10 times the number of arithmetic steps.

Ideally, we want to charge each extra step to the arithmetic step that it directly sup-
ports, and in this way (hopefully) never overcharge any single arithmetic step. For the
extra steps in the aforementioned loop (lines 20-22), this is easy: we charge them directly
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to the multiplication that happens in the corresponding iteration of the loop.
The precise details of this kind of charging may be a little tricky, but it can be done in

the same spirit for all extra steps, with one major exception: an unsuccessful search for a
row exchange (lines 3-13) cannot easily be charged to any arithmetic step. For example,
if A’s first column is 0, Gauss elimination does not do a single arithmetic step, but still
needs extra steps before it gives up. In this case, we have no one to pay for them, but the
cost of these steps is small.

What we find in the end is the following: Let g(m) be the number of arithmetic steps
necessary to solve a system of m equations with m variables using Gauss elimination with
back substitution. Furthermore, let t(m) be the total number of steps needed for that in
the worst case (we don’t even have to be super precise about what we count as a step).
Then there is a constant c ∈ N such that

t(m) ≤ c(g(m) +m) for all m ∈ N. (3.3)

Here, the “+m” pays for the few steps in an unsuccessful search for a row exchange that
cannot be charged to any arithmetic steps. You can also frame this as adding m “ghost”
arithmetic steps, after which we can make sure that every arithmetic step will be charged
at most CHF c.

The previous inequality is our interpretation of the arithmetic steps accounting “for
most” of the steps. If you want a less generous interpretation of “at most”, you also
need to upgrade other steps to crucial status, but this usually entails a more complicated
analysis.

To summarize: for Gauss elimination with back substitution, we will find a function
g such that g(m) counts the number of arithmetic steps necessary to solve a system of m
equations with m variables. After adding m, the total number of steps is by some constant
factor c larger.

The precise value of c is difficult to determine. It depends on our charging scheme and
on what we count as an “extra step”. Therefore, it is common practice not to talk about c
at all. Instead, we will say that the runtime (in terms of total step count) for input size m
is

O(g(m) +m).

This big-O-notation means “at most g(m) + m, multiplied by some constant factor” (that
does not depend on m but could otherwise be anything; for example, 10, or 100).

The good thing is that O(g(m)+m) is also a valid description of the algorithm’s actual
runtime on any given computer. This is because the actual runtime (in whatever unit of
time) is also just the total number of steps, multiplied by another constant that bounds
the actual runtime of a single step.

After having set the stage, we can now formulate and prove the main result about the
efficiency of Gauss elimination. Our count for the number of arithmetic steps in Theo-
rem 3.6 will be precise in the case where elimination succeeds; otherwise, it is an upper
bound. Generally, it is rare that we can count the steps of an algorithm precisely. But up-
per bounds “close to the truth” are usually all that is needed, in particular in an analysis
involving a “big O.”
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Theorem 3.6. Let Ax = b be a system of m linear equations in m variables, m ≥ 1. Gauss
elimination with back substitution solves Ax = b (or gives up) with at most

g(m) =
2

3
m3 +

3

2
m2 − 7

6
m

arithmetic steps and therefore in time O(m3).

Here, O(m3) is a shorthand for O(f(m)) where f(m) = m3.

Proof. Time O(m3) follows from the value of g(m), since the first term 2
3
m3 is the dominat-

ing one. We can for example say that that

g(m) +m ≤ 2

3
m3 +

3

2
m3 =

13

6
m3.

As argued before, the runtime is at most c(g(m) +m) for some constant c, hence at most
c · 13

6
m3 which is O(m3).

Let’s count the number of arithmetic steps. For elimination, this can be done by in-
specting the code in Table 3.6. Arithmetic steps happen in line 18 (1 division), line 21 (1
multiplication, 1 subtraction) and line 22 (1 multiplication, 1 subtraction). These are done
repeatedly through the surrounding loops starting in lines 20 (for (k...)), 16 (for
(i...)) and 1 (for (j...)). Taking the loop ranges into account, we arrive at the
following total number of arithmetic steps (if we give up on the way, we have less):

e(m) =
m−1∑
j=0

m−1∑
i=j+1


Line 18︷︸︸︷
1 +

m−1∑
k=j+1

Line 21︷︸︸︷
2︸ ︷︷ ︸

Line 20

+

Line 22︷︸︸︷
2


︸ ︷︷ ︸

Line 16︸ ︷︷ ︸
Line 1

.

This triple sum looks a bit scary, but it’s not too bad. The number in the big bracket is
easily computed, and the sum over i as well:

e(m) =
m−1∑
j=0

m−1∑
i=j+1

(2(m− j) + 1) =
m−1∑
j=0

(m− j − 1)(2(m− j) + 1)

= 2
m−1∑
j=0

(m− j − 1)(m− j)︸ ︷︷ ︸
emul(m)=esub(m)

+
m−1∑
j=0

(m− j − 1)︸ ︷︷ ︸
ediv(m)

.

Here, emul(m) counts the number of multiplications and esub(m) the number of sub-
tractions (both numbers are the same); ediv(m) counts the number of divisions. After
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substituting m − j − 1 with ℓ, these become standard summations that can be found in
collections of formulas (or proved by induction):

emul(m) = esub(m) =
∑m−1

ℓ=0 ℓ(ℓ+ 1) = 1
3
(m3 −m),

ediv(m) =
∑m−1

ℓ=0 ℓ = 1
2
(m2 −m).

For back substitution as in Table 3.2, we can count in the same way and obtain that the
number of arithmetic steps is

b(m) =
m−1∑
i=0


m−1∑
j=i+1

Line 4︷︸︸︷
2︸ ︷︷ ︸

Line 3

+

Line 5︷︸︸︷
1


︸ ︷︷ ︸

Line 1

=
m−1∑
i=0

(2(m− i− 1) + 1)

= 2
m−1∑
i=0

(m− i− 1)︸ ︷︷ ︸
bmul(m)=bsub(m)

+
m−1∑
i=0

1︸ ︷︷ ︸
bdiv(m)

.

This gives
bmul(m) = bsub(m) =

∑m−1
ℓ=0 ℓ = 1

2
(m2 −m)

bdiv(m) =
∑m−1

i=0 1 = m.

In summary, we get

e(m) = 2emul(m) + ediv(m) = 2
3
(m3 −m) + 1

2
(m2 −m),

b(m) = 2bmul(m) + bdiv(m) = (m2 −m) +m,
g(m) = e(m) + b(m) = 2

3
(m3 −m) + 3

2
(m2 −m) +m.

After collecting the linear terms (the ones with “m”), we get the claimed value.

Let us look at some concrete values of g(m). For example, we get

g(1) =
2

3
+

3

2
− 7

6
= 1.

This corresponds to the fact that one linear equation ax = b in one variable x can be solved
with one arithmetic step (a division), resulting in x = b/a.

Here are some more values where we also list the dominating term 2
3
m3 (rounded to
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integer) for comparison.

m g(m) 2
3
m3, rounded to integer

2 9 5
3 28 18
4 62 43
5 115 83
6 191 144
7 294 229
8 428 341
9 597 486
...

...
...

100 681550 666667
...

...
...

1000 668165500 666666667

This shows that for larger systems, the step count becomes quite high, and the dominating
term actually accounts for most of it. So

2

3
m3

is a pretty good lower bound for the number of arithmetic steps. From this, we can al-
ready conclude that Gauss elimination will be very slow for m = 106 (1 million) on a
normal computer, even if that computer can perform an astonishing number of 1012 (1
trillion) arithmetic steps per second. Indeed, for m = 106, Gauss elimination needs at
least 2

3
m3 = 2

3
1018 arithmetic steps, and these alone will take at least 2

3
106 seconds which

is roughly a week. And if the system has m = 107 (10 million), the runtime goes up by
factor of 1000, resulting in at least 20 years of computing.

In practice, systems with m = 106 and even larger are common and can be solved
much faster by algorithms exploiting that typical constraint matrices A are sparse, mean-
ing that most of their entries are 0. In such cases, we can use algorithms that only deal
with the few nonzero entries, resulting in significantly less (arithmetic) steps.

3.3 Inverse matrices
Based on understanding success and failure of Gauss elimination, we look at the im-
portant class of invertible matrices, the square matrices that lead to an “undoable”
linear transformation x → Ax. It turns out that these are exactly the ones with lin-
early independent columns, and therefore exactly the ones for which Gauss elimina-
tion works and computes the unique solution of Ax = b.
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In the proof of Lemma 3.3 (about the effect of a row operation during Gauss elimina-
tion), we have used the “inverse” row operation with matrix M ′, undoing a previous row
operation with matrix M : if MA = A′, then M ′A′ = A. We can also write this as

M ′MA = A,

and as this works for every m × n matrix A, we can set A = I , the identity matrix, to get
(using Corollary 2.20 in the first equality) that

M ′M = M ′MI = I.

Hence, if we premultiply the matrix of the row operation with the matrix of the inverse
row operation, we get the identity matrix. For example,1 0 0

2 1 0
0 0 1


︸ ︷︷ ︸
add 2·(row 1)

to (row 2)

 1 0 0
−2 1 0
0 0 1


︸ ︷︷ ︸
subtract 2·(row 1)

from (row 2)

=

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

I

.

This is not surprising if you think of the row subtraction and row addition as linear trans-
formations TM and TM ′ whose effects cancel out (yield the identity transformation) when
you apply them one after the other: TM ′(TM(x)) = TI(x) = x; see Section 2.3.4.

Here, we want to investigate this for general matrices M , not only the ones corre-
sponding to row operations.

3.3.1 Definition and basic properties

Definition 3.7 (Invertible matrix). Let M be an m×m matrix. M is called invertible if there
exists an m×m matrix M−1 (called the inverse of M ) such that

MM−1 = M−1M = I.

For a row operation matrix M , the matrix M ′ of the inverse row operation is indeed
the inverse matrix according to this definition. We have already argued that M ′M = I ,
but MM ′ = I also holds, since the original row operation is the inverse of the inverse
row operation. It is generally true for two m ×m matrices A and B that AB = I implies
BA = I , so the first equality in Definition 3.7 is actually superfluous. However, we will
only prove this in Exercise 3.12 below, so for the time being, we work with the “fool-
proof” Definition 3.7 of the inverse.

Let us look at the situation for m = 1, 2. For m = 1, an m×m matrix is just a number
(between square brackets), the identity matrix is the number 1, and the inverse is the
reciprocal number:

86



Case 1× 1.
M =

[
a
]
⇒ M−1 =

[
1
a

]
(if a ̸= 0).

Hence, the inverse exists unless a = 0.

Case 2× 2.

M =

[
a b
c d

]
, ⇒ M−1 =

1

ad− bc

[
d −b
−c a

]
(if ad− bc ̸= 0).

To see that this formula for M−1 is correct, we simply check that it satisfies Definition 3.7.
Again, we see that the inverse does not always exist, but the condition here (ad− bc ̸= 0)
is less obvious than for m = 1. It is not hard to see (try to see this!) that this condition—
expressed in words—reads as follows: The two columns of M are linearly independent.

Could there also be a different inverse? No, if a matrix has an inverse, it is unique:

Lemma 3.8. Let M be an m×m matrix with two inverses A and B. Then A = B.

Proof. Using associativity of matrix multiplication (Lemma 2.22) as well as Corollary 2.20,
we compute

A = IA = (BM)A = B(MA) = BI = B.

For m×m matrices with m > 2, there is also a formula for the inverse, but this requires
the concept of determinants to which we will only get in the second part of the lecture. The
next lemma lets us compute the inverse of a product of two invertible matrices.

Lemma 3.9. Let A and B be invertible m×m matrices. Then AB is also invertible, and

(AB)−1 = B−1A−1.

Recall that AB is the matrix of the linear transformation TAB(x) = TA(TB(x)) (first
apply TB, then TA); see Lemma 2.30. To undo this, we need to apply the inverse transfor-
mations in reverse order: TB−1(TA−1(x)) = TB−1A−1(x) (first undo TA, then undo TB). You
can already consider this a proof sketch of the lemma, but there is also a more direct proof
not involving linear transformations.

Proof.
(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and
(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I.

This naturally extends to more matrices, for example (ABC)−1 = C−1B−1A−1, but we
skip the formal statement and its proof.

Inversion also commutes with transposition (Definition 2.11).
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Lemma 3.10. Let A be an invertible m×m matrix. Then the transpose matrix A⊤ is also invert-
ible, and (

A⊤)−1
=
(
A−1

)⊤
.

Proof. We need to check that

A⊤ (A−1
)⊤︸ ︷︷ ︸

(A−1A)⊤

=
(
A−1

)⊤
A⊤︸ ︷︷ ︸

(AA−1)⊤

= I,

and this is true since we can invoke Lemma 2.19 to pull the transpositions out (below
the curly braces) and then use that A and A−1 are inverse to each other, alongside with
I⊤ = I .

3.3.2 The Inverse Theorem

We have already made the point that a 2× 2 matrix is invertible if and only if its columns
are linearly independent. This actually holds for m × m matrices in general. Even for
m = 1, this makes sense. Saying that the columns of a 1 × 1 matrix

[
a
]

are linearly
independent is a fancy way of saying that a ̸= 0.

The following theorem can be thought of as characterizing “good” matrices (the ones
for which Gauss elimination succeeds) in three different ways, connecting three impor-
tant concepts. We already know from Theorem 3.5 that success of Gauss elimination is
equivalent to statement (iii).

Theorem 3.11 (Inverse Theorem). Let A be an m × m matrix. The following statements are
equivalent.

(i) A is invertible.

(ii) For every b ∈ Rm, Ax = b has a unique solution x.

(iii) The columns of A are linearly independent.

Proof. We establish equivalence through the following implications:

(i) ⇒ (ii)
⇑ ⇓

(ii) ⇐ (iii)

(i)⇒ (ii): if A is invertible, the natural candidate for the unique solution of Ax = b is
x = A−1b. This is the m-dimensional analog of solving ax = b via x = b/a. Indeed, this
works. To show that A−1b solves Ax = b, we compute

A(A−1b) = (AA−1)b = Ib = b.
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To prove uniqueness, take any solution x satisfying Ax = b. Multiplying by A−1 from
both sides gives

x = A−1Ax = A−1b.

So there is no solution other than A−1b.
(ii) ⇒ (iii): if Ax = b has a unique solution for every b, this in particular holds for

b = 0. For this choice of b, (ii) is saying that the columns of A are linearly independent,
see Observation 3.2; so we have deduced (iii).

(iii)⇒ (ii): If the columns of A are linearly independent, Gauss elimination succeeds
by Theorem 3.5, producing an equivalent system Ux = c with the upper triangular matrix
U having nonzero diagonal entries. Back substitution as in Section 3.2.1 shows that there
is a unique solution of Ux = c and hence also of Ax = b.

(ii)⇒ (i): If Ax = b has a unique solution for all b, we find vectors v1,v2, . . . ,vm ∈ Rm

such that

Av1 =


1
0
...
0


︸︷︷︸
e1

, Av2 =


0
1
...
0


︸︷︷︸
e2

, . . . , Avm =


0
0
...
1


︸︷︷︸
em

⇒ A

 | | |
v1 v2 · · · vm

| | |


︸ ︷︷ ︸

B

=


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1


︸ ︷︷ ︸

I

.

So AB = I , and B is the obvious candidate for the inverse of A. We still need to show
that BA = I to conclude that B = A−1 and that A is invertible according to Definition 3.7.

For this, we first compute AI = IA = (AB)A = A(BA), so A(I − BA) = 0. Here, on
top of associativity, we also use distributivity of matrix multiplication; see Lemma 2.22.
Let the columns of I − BA be w1,w2, . . . ,wm. Then A(I − BA) = 0 reads as Awj = 0 for
all j. The columns of A are linearly independent by (ii) ⇒ (iii). Hence wj = 0 for all j,
since 0 is the only solution of Ax = 0, see Observation 3.2. So all columns of I − BA are
0, meaning that BA = I .

In the previous proof, we have seen that AB = I implies BA = I if the columns of
A are linearly independent. The next exercise shows that we do not need to require this
condition. As you may realize in solving this exercise, AB = I already implies that the
columns of A are linearly independent.

Exercise 3.12. Let A and B be two m×m matrices such that AB = I . Then we also have BA = I
and therefore A−1 = B and B−1 = A by Definition 3.7.
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3.4 LU and LUP decomposition

Here, we introduce two important decompositions of a square matrix with linearly
independent columns, or of some version of it with exchanged rows: A = LU if
Gauss elimination succeeds without row exchanges, and PA = LU if row exchanges
are needed. Here, L is a lower triangular matrix, U is an upper triangular matrix, and
P is a permutation matrix. This section can also be considered as a formal correctness
proof of Gauss elimination.

Recall that Gauss elimination is trying to transform an m×m matrix A into an upper
triangular matrix U , via row operations; see Section 3.2.2.

If this succeeds without row exchanges, we will be able to says precisely how A and
U relate to each other. This will lead us to the LU decomposition. But even if there are
row exchanges (the less nice case), or Gauss elimination fails altogether (the ugly case),
we can still get something a bit weaker, namely an LUP decomposition.

Once we have an LU or LUP decomposition of A, we can solve Ax = b in time O(m2),
for any given right-hand side b. This is much faster then Gauss elimination which we
have seen needs O(m3) time; see Section 3.2.4. We still need O(m3) time to compute the
LU or LUP decomposition, but if we need to solve Ax = b for many different b, this initial
effort pays off quickly.

3.4.1 LU decomposition

Let’s assume that Gauss elimination on Ax = b succeeds without row exchanges, trans-
forming Ax = b into Ux = c with the same solutions, where U is an upper triangular
matrix.

More concretely, we have obtained U as a product of some elimination matrices and
A; in the example of Section 3.2.2, this product looks as follows:1 0 0

0 1 0
0 −1 1


︸ ︷︷ ︸
subtract 1·(row 2)

from (row 3)

 1 0 0
0 1 0
−1 0 1


︸ ︷︷ ︸
subtract 1·(row 1)

from (row 3)

 1 0 0
−2 1 0
0 0 1


︸ ︷︷ ︸
subtract 2·(row 1)

from (row 2)

2 3 4
4 11 14
2 8 17


︸ ︷︷ ︸

A

=

2 3 4
0 5 6
0 0 7


︸ ︷︷ ︸

U

.

For another 3×3 matrix A, the multiples that we subtract will be different, but the general
pattern is the same:1 0 0

0 1 0
0 −c32 1


︸ ︷︷ ︸
subtract c32·(row 2)

from (row 3)

 1 0 0
0 1 0

−c31 0 1


︸ ︷︷ ︸
subtract c31·(row 1)

from (row 3)

 1 0 0
−c21 1 0

0 0 1


︸ ︷︷ ︸
subtract c21·(row 1)

from (row 2)

A = U.
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Multiplying the three elimination matrices with each other yields 1 0 0
−c21 1 0

c32c21 − c31 −c32 1

A = U. (3.4)

The “complicated” matrix on the left is the one resulting from applying the second and
the third elimination step to the elimination matrix of the first step (and this is probably
the easiest way to compute the matrix). But here comes the magic: The inverse of the
complicated matrix is a very simple matrix: 1 0 0

−c21 1 0
c32c21 − c31 −c32 1

−1

=

 1 0 0
c21 1 0
c31 c32 1

 .

To verify this, you can multiply the two matrices and check that the result is indeed the
identity matrix. Hence, multiplying both sides of (3.4) with the simple inverse yields

A =

 1 0 0
c21 1 0
c31 c32 1


︸ ︷︷ ︸

L

U.

This means, we have obtained a decomposition of A in the form A = LU . The matrix U
is the upper triangular one resulting from Gauss elimination, and L is a lower triangular
matrix with 1’s on the diagonal; below the diagonal, L records the multiples that we have
used for the row subtractions throughout the elimination steps.

The question is whether this always works; maybe it does for m = 3 but not in general.
To show that it works in general, we need a theorem with a proof. If we are only interested
in A, we can simply remove lines 12 and 22 (affecting b) from the elimination procedure
in Table 3.6. This gives us a version of Gauss elimination that transforms only A instead
of A and b, and this is the one we refer to in the next theorem.

Theorem 3.13 (LU decomposition). Let A be an m×m matrix on which Gauss elimination as
in Table 3.6 succeeds without row exchanges, resulting in an upper triangular matrix U . Let cij
(computed in Line 18) be the multiple of row j that we subtract from row i > j when we eliminate
in column j. Then A = LU where

L =


1
c21 1
... . . .

cm1 · · · cm,m−1 1

 .

More formally, L = [ℓij]
m m
i=1,j=1 where

ℓij =


0 if i < j
1 if i = j
cij if i > j

.
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Proof. We look at a fixed row i. Whenever we change row i during Gauss elimination, we
subtract cij · (row j) from it, for some previous row j. At this point, row j has already
been “finalized”, meaning that it is the j-th row of our resulting matrix U . Pictorially, the
situation is this, with ujj ̸= 0 being the current pivot:

u11 · · · ← finalized (in U )
0 u22 · · · ← finalized (in U )

0 0
. . . ...

row j 0 0 · · · ujj · · · ujm ← finalized (in U )
...

row i 0 0 · · · ⋆ij · · · ⋆im ← now subtract cij · (row j)

So if we track what happens to row i (initially in A), we see multiples of finalized rows
1, 2, . . . , i− 1 being subtracted, after which we end up with row i in U :

(row i) in A initially
− ci1 · (row 1) in U step 1
− ci2 · (row 2) in U step 2
...
− ci,i−1 · (row i− 1) in U step i− 1
= (row i) in U finalized.

If we solve this equation for the first term, (row i) in A, we see that this row is a linear
combination of the first i rows of U . In matrix notation, the linear combination can be
written as follows:

(row i) of A =
[
ci1 ci2 · · · ci,i−1 1 0 · · · 0

]︸ ︷︷ ︸
row vector

U.

Doing this for all rows of A and combining the m row vector equations into one matrix
equation gives the desired result:

A =


1
c21 1
... . . .

cm1 · · · cm,m−1 1


︸ ︷︷ ︸

L

U.

In other words, Gauss elimination (without row exchanges) actually computes an LU
decomposition of A while transforming A to U . This all happens in time O(m3), see The-
orem 3.6.
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Solving Ax = b from A = LU . Once we have an LU decomposition of A, we can use it
to solve Ax = b for any given right-hand side b in O(m2) time which is much faster than
Gauss elimination. This is very useful if we need to solve many systems with the same
matrix A.

To see this, we write Ax = b as
L Ux︸︷︷︸

y

= b.

We first solve Ly = b for y. Since L is lower triangular, we can do this using forward
substitution. This works exactly like back substitution (Section 3.2.1), except that it finds
the solution in forward order y1, y2, . . ., because L is lower instead of upper triangular.
Since L has 1’s on the diagonal, this succeeds, and we don’t even need divisions.

Once we have y, we now solve Ux = y using back substitution to obtain x. Forward
and back substitution only require (m2) arithmetic steps each and therefore run in O(m2)
time; see Section 3.2.4. One way to think about solving Ly = b is that we simply replay
the row subtractions that Gauss elimination previously did on A, except that we now do
them on b as well (putting back lines 12 and 22), leading to y = c in the end.

Beyond LU. What happens if Gauss elimination succeeds but needs some row exchanges
on the way? The replay approach still works and solves Ax = b in time O(m2) if we re-
member all row subtractions and row exchanges that happened on the way. With A = LU ,
the matrix L was our “memory”, but if there are row exchanges, this no longer works.

The proof of Theorem 3.13 breaks down, since it can only deal with elimination matri-
ces, but not with permutation matrices in between them. There is in general no way to fix
this: there are matrices for which Gauss elimination succeeds (with row exchanges), but
there is no LU decomposition.

As an example, consider a matrix of the the form

A =

[
0 1
1 a

]
,

where a is an arbitrary number. Gauss elimination is done after one row exchange.
Let’s try to write A in the form A = LU where L is lower triangular and U is upper

triangular: [
0 1
1 a

]
︸ ︷︷ ︸

A

=

[
ℓ11 0
ℓ21 ℓ22

]
︸ ︷︷ ︸

L

[
u11 u12

0 u22

]
︸ ︷︷ ︸

U

.

These are 4 equations, one for each entry of A, and we consider three of them:

0 = ℓ11u11, 1 = ℓ11u12,
1 = ℓ21u11.

The equation 0 = ℓ11u11 can only hold if at least one of ℓ11 and u11 is 0, but then at least
one of the two other equations fails. So there is no way to get A = LU in this case.
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But we can always get an LU decomposition after exchanging some rows of A first,
and this will give us the LUP decomposition

PA = LU,

where P is a permutation matrix. This is the “memory” of all that happened when there
were also row exchanges. The permutation matrix P will record the row exchanges, and
L records the row subtractions.

Before we can formally derive the LUP decomposition, we need to introduce permu-
tation matrices.

3.4.2 Permutations and permutation matrices

Previously, we have only used permutation matrices that exchange two rows, but now
we need to deal with general permutation matrices. We start with permutations.

Definition 3.14 (Permutation). A permutation of [m] = {1, 2, . . . ,m} is a bijective function
π : [m]→ [m].

Bijective means that the function values cover all of [m]: no value is missing, and no
value appears twice. Here is an example for m = 5.

i 1 2 3 4 5
π(i) 2 3 5 4 1

(3.5)

Hence, a permutation can be thought of as reordering the sequence 1, 2, . . . ,m into
π(1), π(2), . . . , π(m). In the example, the reordered sequence is 2, 3, 5, 4, 1.

There are
m! = 1 · 2 · · ·m

permutations of [m]. To see this, we can for example argue as follows: there are m ways of
putting 1 into the sequence π(1), π(2), . . . , π(m). In the previous example, 1 was put last,
but we could have put it at any of the 5 positions in the lower row of the table.

For each of the m ways of putting 1, there are m − 1 ways of putting 2, so there are
m(m− 1) ways of putting 1 and 2. For each of these ways, there are m− 2 ways of putting
3, and so on. In the end, the number of ways of putting all m numbers is m!.

If π, π′ are two permutations of [m], then their composition π′ ◦π is again a permutation.
The composition is defined as

(π′ ◦ π)(i) = π′(π(i)),

the function that first applies π and then π′. To show that this is a permutation, we need
to check the bijection: for every k, there is exactly one i with k = π′(π(i)). Indeed, there is
exactly one j with k = π′(j), so we must have π(i) = j; again, there is exactly one i doing
that.
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Definition 3.15 (Permutation matrix). Let π : [m]→ [m] be a permutation. The permutation
matrix associated with π is the m×m matrix P = [pij]

m m
i=1,j=1 with

pij =

{
1 if j = π(i)
0 otherwise .

Vice versa, we also say that π is associated with P .

For example,

P =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0


is the permutation matrix associated with π in (3.5). The row/column pairs (i, j) where
we find 1’s are (1, 2), (2, 3), (3, 5), (4, 4), (5, 1)—exactly the pairs (i, j) where j = π(i).

Since a permutation is bijective, a permutation matrix has a single 1 in each row and
column. The 1 in row i is in column π(i), and the 1 in column j is in the unique row i
such that π(i) = j. Vice versa, every matrix with a single 1 in each row and column is
a permutation matrix. The associated permutation is given by the positions of the 1’s in
each row.

In this sense, a permutation matrix can be considered as the graph of its associated
permutation, with inputs on the “row axis” and outputs on the “column axis”, se Fig-
ure 3.2.

i

π(i)

1

2

3
4

5

1 2 3 4 5
0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

1 0 0 0 0



Figure 3.2: A permutation matrix can be interpreted as the graph of its associated permu-
tation: The 1 in row i indicates the function value π(i), visualized with a black dot in the
graph.

The linear transformation TP of a permutation matrix P (Definition 2.25) reorders the
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input vector according to the associated permutation. For example,
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0


︸ ︷︷ ︸

P


x1

x2

x3

x4

x5


︸ ︷︷ ︸

x

=


x2

x3

x5

x4

x1


︸ ︷︷ ︸
TP (x)

.

It follows that if P is an m×m permutation matrix and A any m×n matrix, then PA is the
matrix arising from A by reordering the rows according to the associated permutation.

In summary, a permutation matrix is the “linear algebra way” of looking at a permu-
tation, but it contains the same information. In particular, there are also m! permutation
matrices of size m×m. The identity matrix I is a special permutation matrix; its associated
permutation is the identity permutation with π(i) = i for all i.

What about P−1, the inverse of the permutation matrix P associated with π? If it exists,
then applying P−1 to Px (the input vector after reordering) must give P−1Px = Ix = x
(the input vector before reordering), so P−1 is undoing the reordering. Such a matrix P−1

therefore indeed exists. It is again a permutation matrix, associated with π−1, the inverse
of π: If π(i) = j, then π−1(j) = i. Table 3.7 shows how this looks like for the example (3.5):

i 1 2 3 4 5
π(i) 2 3 5 4 1

j 1 2 3 4 5
π−1(j) 5 1 2 4 3

P =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0

 P−1 =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0


Table 3.7: The inverse permutation matrix corresponds to the inverse permutation. While
π(5) = 1 (last column of π’s value table), we have π−1(1) = 5 (first column of π−1’s value
table).

In this example, P−1 is the transpose of P , and this is true in general.

Lemma 3.16. Let P be a permutation matrix. Then P−1 = P⊤.

Proof. We check that PP⊤ = I (P⊤P = I follows by a similar argument, or directly from
Exercise 3.12). What we need to check for this is

(i-th row of P ) · (j-th column of P⊤) = δij =

{
1, if i = j
0, otherwise .
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By Definition 2.11 of the transpose, the j-th column of P⊤ is the j-th row of P , hence, we
need to check that

(i-th row of P ) · (j-th row of P ) = δij.

This is now easy: row i of P is the standard unit vector eπ(i), where π is the associated
permutation. Thus, eπ(i) · eπ(i) = 1 for all i. For i ̸= j, eπ(i) · eπ(j) = 0 since π(i) ̸= π(j) (π is
a bijection).

Whenever we have a square matrix

M =

 | | |
v1 v2 · · · vm

| | |


such that

vi · vj = δij,

we can argue in the same way that M−1 = M⊤. Such matrices are called orthogonal matrices
and will play an important role in the second part of the course. Here, we have seen that
permutation matrices form a (simple) class of orthogonal matrices.

We conclude the treatment of permutation matrices with another simple but important
lemma.

Lemma 3.17. Let P, P ′ be m×m permutation matrices with associated permutations π, π′. Then
PP ′ is a permutation matrix as well, associated with the permutation π′ ◦ π.

Before we prove this, let us clear a potential confusion: You may have expected the
associated permutation to be π ◦ π′, and this would indeed be the result if we had de-
cided to read a permutation matrix column-wise instead of row-wise, in order to obtain its
associated permutation. But this decision would have had other counter-intuitive effects.

At the bottom of this issue is the following: there are two natural ways of describing
an ordering of [m] by a permutation π. Let’s look at the ordering

2, 3, 5, 4, 1

that we have considered before. We have chosen π such that the i-th element in the order-
ing is π(i). This gives

i 1 2 3 4 5
π(i) 2 3 5 4 1

.

Alternatively, we could have chosen π such that element i occurs at position π(i) in
the ordering. This gives

i 1 2 3 4 5
π(i) 5 1 2 4 3

,

exactly the inverse of the previous permutation.
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The upshot is that if someone just says “the permutation 2, 3, 5, 4, 1”, then we should
clarify what they mean.

In any case, the important consequence of Lemma 3.17 is that the product of two per-
mutation matrices is again a permutation matrix. Let’s prove it.

Proof. We have

PP ′


x1

x2
...
xm

 = P


xπ′(1)

xπ′(2)
...

xπ′(m)


︸ ︷︷ ︸

y

= P


y1
y2
...
ym

 =


yπ(1)
yπ(2)

...
yπ(m)

 =


xπ′(π(1))

xπ′(π(2))
...

xπ′(π(m))

 =


x(π′◦π)(1)
x(π′◦π)(2)

...
x(π′◦π)(m)

 .

In the second-to-last equality, we use the definition of y: yi = xπ′(i) for all i.

3.4.3 LUP decomposition

Now we are prepared to establish the “memory” of Gauss elimination in the general case.

Theorem 3.18 (LUP decomposition). Let A be an m × m matrix with linearly independent
columns, m ≥ 1. There exist three m×m matrices P,L, U such that

PA = LU,

where P is a permutation matrix, L a lower triangular matrix with 1’s on the diagonal, and U an
upper triangular matrix with nonzero diagonal entries.

The idea is the following: running Gauss elimination yields

U = Em−1Pm−1Em−2Pm−2 · · ·E1P1A,

where Pj is the permutation matrix for the row exchange in column j (Pj = I if there is
no row exchange), and Ej is the product of all elimination matrices used to produce the
zeros below the diagonal in column j.

What if we move all row exchanges to the very beginning and then do Gauss elimi-
nation on the matrix PA where P = Pm−1Pm−2 · · ·P1, the permutation matrix that sum-
marizes all the row exchanges? Our hope is that this now works without any further row
exchanges, in which case Theorem 3.13 gives us an LU decomposition of PA.

Now we rigorously show that our hope is reality. The following proof is from the text-
book Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein [CLRS22, Section
28.1]. Their proof works for any square matrix A, resulting in a matrix U that may have
some 0’s on the diagonal. To stay consistent with our chapter’s philosophy, we present
the proof only for the case where A is invertible and Gauss elimination succeeds; this is
the case covered by Theorem 3.18.
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Proof. We proceed by induction on m. For the base case m = 1, we have A =
[
a
]

for some
number a ̸= 0, so we can choose P = L =

[
1
]

(the 1 × 1 identity matrix) and U = A to
satisfy PA = LU as required.

If m > 1, we start with a row exchange to transform A into

P1A =


a | u |

|
v
|

B

 ,

with a ̸= 0. P1 is the permutation matrix that does the row exchange (we have P1 = I
if no row exchange is necessary). We know that such a row exchange is possible: Gauss
elimination succeeds whenever A has linearly independent columns (Theorem 3.5).

Next, we apply elimination in the first column to turn v into 0, via
1 | 0 |

|
− 1

a
v
|

I


︸ ︷︷ ︸

E1

P1A =


a | u |

|
0
|

A′

 . (3.6)

The matrix E1 is collecting all m− 1 elimination matrices we need for that in one matrix.
The effect of premultiplication with E1 is that ( 1

a
vi) · (row 1) is subtracted from row i+ 1,

for i = 1, . . . ,m− 1. As needed, this cancels all the vi’s below a.
Since A′ is an (m−1)×(m−1) matrix with linearly independent columns (this follows

from Corollary 3.4; try to do the argument!), we can now use the induction hypothesis to
find (m− 1)× (m− 1) matrices P ′, L′, U ′ such that P ′A′ = L′U ′, where P ′ is a permutation
matrix, L′ a lower triangular matrix with 1’s on the diagonal, and U ′ an upper triangular
matrix with nonzero diagonal entries. Applying the extended permutation matrix

P ′
+ =


1 | 0 |

|
0
|

P ′


to both sides of (3.6), we therefore get

P ′
+E1P1A =


1 | 0 |

|
0
|

P ′




a | u |

|
0
|

A′

 =


a | u |

|
0
|

P ′A′

 =


a | u |

|
0
|

L′U ′

 .

(3.7)
So far, nothing much has actually happened (but verify the first equality for yourself!).

One way we can think about it is this: The induction hypothesis has already moved
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the row exchanges in steps 2, . . . ,m − 1 of Gauss elimination to the beginning of step
2. Since we simply assume the induction hypothesis, this has happened “for free” and
transformed

U = Em−1Pm−1Em−2Pm−2 · · ·E1P1A

into
U = E ′

m−1E
′
m−2 · · ·E ′

2 Pm−1Pm−2 · · ·P2︸ ︷︷ ︸
P ′
+

E1P1A.

There is just one last step missing, but that one we have to do ourselves: get E1 past P ′
+.

Claim: With w = − 1
a
v and w′ = P ′(− 1

a
v) the result of applying P ′ to w, we have

1 | 0 |

|
0
|

P ′


︸ ︷︷ ︸

P ′
+


1 | 0 |
|
−w
|

I


︸ ︷︷ ︸

E1

=


1 | 0 |

|
−w′

|
I


︸ ︷︷ ︸

E′
1


1 | 0 |

|
0
|

P ′


︸ ︷︷ ︸

P ′
+

.

A claim is a “sub-lemma” within a proof that doesn’t deserve full lemma status, since
it is needed only locally. A claim is also proved locally. To do this here, we compute both
products. P ′

+E1 results from E1 by permuting the rows, leaving the first row in place and
permuting the other ones using P ′. This yields

P ′
+E1 =


1 | 0 |

|
−w′

|
P ′

 .

E ′
1P

′
+, on the other hand, results from P ′

+ by subtracting w′
i · (row 1) from row i + 1, for

i = 1, 2, . . . ,m−1. As row 1 is
[
1 | 0 |

]
, this only affects the first column and replaces

0 by −w′ there, hence

E ′
1P

′
+ =


1 | 0 |

|
−w′

|
P ′


as well.

Applying the claim to (3.7) gives

E ′
1 P

′
+P1︸ ︷︷ ︸
P

A =


a | u |

|
0
|

L′U ′.

 . (3.8)
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We have already found the desired permutation matrix P = P ′
+P1, using that a product

of two permutation matrices is a permutation matrix (Lemma 3.17). It remains to find L
and U . For this, we move E ′

1 to the other side, by multiplying both sides with

(E ′
1)

−1 =


1 | 0 |

|
w′

|
I

 .

This formula for the inverse is not surprising: to undo subtractions of multiples of the
first row from the rows below, we simply add the same multiples back.

We can also easily verify that the right-hand side of (3.8) can be decomposed as
a | u |

|
0
|

L′U ′.

 =


1 | 0 |

|
0
|

L′




a | u |

|
0
|

U ′

 .

After this, (3.8) becomes

PA = (E ′
1)

−1


1 | 0 |

|
0
|

L′


︸ ︷︷ ︸
computation as for E′

1P
′
+ in Claim


a | u |

|
0
|

U ′

 =


1 | 0 |

|
w′

|
L′


︸ ︷︷ ︸

L


a | u |

|
0
|

U ′


︸ ︷︷ ︸

U

.

Hence we have also found L and U as desired.

Admittedly, this proof was somewhat technical. But the alternative (believing it to be
obvious that all row exchanges can be moved to the beginning) is not convincing.

Solving Ax = b from PA = LU . This is very similar to what we did in Section 3.4.1
from A = LU , except that it now works for every matrix A on which Gauss elimination
succeeds.

We multiply with P−1 = P⊤ (see Lemma 3.17 for this formula) to obtain A = P⊤LU ,
hence we can write Ax = b as

P⊤ L Ux︸︷︷︸
y︸ ︷︷ ︸

z

= b.

We first solve P⊤z = b for z. In fact, there’s nothing to solve: z = Pb, so we permute
b in the same way we have permuted the rows of A. After this, we proceed as before:
we solve Ly = z for y using forward substitution and then solve Ux = y for x, with
back substitution. All this can be done in O(m2) time, so again much faster than solving
Ax = b from scratch using Gauss elimination.
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3.5 Gauss-Jordan elimination

In this section, we present an algorithm for solving any system Ax = b (or detecting
that there is no solution). The algorithm is very similar in spirit to Gauss elimina-
tion. The most important theoretical contribution of Gauss-Jordan elimination is a
reduction of A to a unique standard form from which we can easily read off many
properties of A that are difficult to see directly. On top of providing an efficient way
of solving Ax = b, this standard form also yields the CR decomposition of A.

So far, we have seen how to solve systems Ax = b where A is a square matrix with
linearly independent columns. This is a very nice case in the sense that there is always
a unique solution x that can be found with Gauss elimination; see Theorem 3.5 and the
Inverse Theorem 3.11.

We will now see an algorithm for the general case (A may be non-square and/or may
have linearly dependent columns). This is a simple extension of Gauss elimination.

3.5.1 (Reduced) row echelon form

In Gauss elimination, we are trying to transform a square matrix A into an upper trian-
gular matrix U with nonzero diagonal entries, using row operations repeatedly. This fails
if A has linearly dependent columns. Now, we want to define a “standard form” into
which we can transform every matrix, even if it has linearly dependent columns, or is not
a square matrix. This standard form is the row echelon form (REF).

Figure 3.3 gives an example of a matrix in REF. This will make it easier to understand
the subsequent definition.

1
1

1
1

0
0
0

0
0
0

j1 j2 j3 j4

1
2
3
4
5
6

Figure 3.3: A 6× 10 matrix in row echelon form REF(2, 3, 6, 8). White entries are 0, unla-
beled gray entries can be any numbers. Removing the last two rows yields a 4×10 matrix
in RREF(2, 3, 6, 8).

Definition 3.19 (Row echelon and reduced row echelon form). Let R = [rij]
m n
i=1,j=1 be an

m×n matrix. R is in row echelon form (REF) if the following holds: There exist r ≤ m column
indices 1 ≤ j1 < j2 < · · · < jr ≤ n such that the following two statements hold:

(i) For i = 1, 2, . . . , r, we have riji = 1.
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(ii) For all i, j, we have rij = 0 whenever i > r or j < ji or j = jk for some k > i.

If r = m, R is in reduced row echelon form (RREF). If we want to describe the shape of R
precisely, we say that R is in REF(j1, j2, . . . , jr) or RREF(j1, j2, . . . , jm).

It’s easiest to understand REF by looking at the matrix row by row. Row i only has 0s
if i > r. This case happens for rows 5 and 6 in Figure 3.3.

Otherwise, row i starts with ji − 1 0s. In column ji, we then have a 1 (first gray entry
in the row). After this, we can have any entries, unless we are in some column jk: there
we again need to have a 0. You can check that the matrix in Figure 3.3 has this behavior
for all rows.

As a consequence, column ji equals ei, the i-th standard unit vector. The shape of
a matrix in REF resembles that of an upper triangular matrix in the sense that there are
prescribed 0s to the lower left (the white area).

Removing rows 5 and 6 in Figure 3.3 yields a matrix in RREF. Generally, RREF does
not allow any zero rows.

The m×m identity matrix I is in RREF(1, 2, . . . ,m), while the m× n zero matrix is in
REF(), meaning that r = 0.

Matrices in REF and RREF are very nice in the sense that we can read off many prop-
erties easily. Here is a first example.

Observation 3.20. A matrix R in REF(j1, j2, . . . , jr) has rank r.

Proof. Recall that the rank of a matrix is the number of independent columns, the ones
that are not linear combinations of previous columns (Definition 2.9). In R, the indepen-
dent columns are precisely the ones with indices j1, j2, . . . , jr. Indeed, in each of these
columns, R makes a “downward step” (has a nonzero entry where all previous columns
have zeros). Such a downward step column is therefore not a linear combination of the
previous columns. But any other column is immediately seen to be a linear combination
of columns j1, j2, . . . , jr, since these are simply the first r standard unit vectors; their linear
combinations are all vectors in Rm with 0-entries at coordinates r + 1, r + 2, . . . ,m.

3.5.2 Direct solution

It is easy to solve Ax = b whenever A is in REF. Much easier even than back substitution
for an upper triangular matrix.

Suppose that A is an m × n matrix in REF(j1, j2, . . . , jr) There are two cases: if bi ̸= 0
for some i > r, there is no solution. This is because the i-th row of A is zero for all i > r,
so the i-th entry of Ax is zero for i > r, no matter what x is.

If bi = 0 for all i > r, there is a solution: we define x by

xj =

{
bi, if j = ji
0, otherwise.

See Figure 3.4 for an illustration.
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1
1

1
1

0
0
0

0
0
0

j1 j2 j3 j4

1
2
3
4
5
6

b1
b2
b3
b4
0
0

0

0
0

0

0
0

b1
b2

b3

b4

=

A

x

b

←
← if ̸= 0 here, no solution

Figure 3.4: Direct solution of Ax = b when A is in RREF
.

This works: since the ji-th column of A is ei, this yields

Ax =
r∑

i=1

biei =
m∑
i=1

biei = b.

For the middle equality, we use that br+1, br+2, . . . , bm = 0.
The vector x just constructed may not be the only solution, but it is the canonical one.

3.5.3 Elimination

Here, we proceed similar to Gauss elimination and use row operations to transform any
system Ax = b into an equivalent system R0x = c where R0 is in REF. After this, we can
use direct solution (see previous section) to either report that the system is unsolvable, or
to compute the canonical solution. The resulting matrix is called R0, since it may have
zero rows at the end. We reserve the name R for the matrix obtained after removing the
zero row.

For Gauss elimination, we have first shown examples and then computer code. Fi-
nally, Theorem 3.18 can be considered as the “official” correctness proof of Gauss elim-
ination. Here, we again start with an example but skip the computer code. It is very
similar to the one for Gauss elimination but more lengthy. After the example, we there-
fore proceed directly to the correctness proof. The good thing is that this one is simpler
than the one for Gauss elimination and at the same time closer to the actual algorithm.

We only show how elimination transforms A into R0. To transform b into c, we apply
the same row operations. One elegant way of doing this is to directly work with the
extended matrix [A|b] that has b as an extra column. But even after transforming only A
(and computing the product of all row operation matrices on the way), we will be able to
efficiently solve Ax = b for every b; see Theorem 3.23 below. This is similar to the case of
Gauss elimination where the resulting LU or LUP decomposition of A provides a way of
solving Ax = b for every b; see Sections 3.4.1 and 3.4.3.
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As in Gauss elimination, we proceed column by column. The nonzero pivots that we
find will determine the “downward step” columns j1, j2, . . . of the resulting matrix in REF.
We maintain a number r, initially equal to 0, counting how many downwards steps we
have already made. The next downward step will then be in some upcoming column of
row r + 1.

Our example matrix is the 3× 5 matrix

A =

2 4 2 2 −2
6 12 6 7 1
4 8 2 2 6

 . (3.9)

In column 1, we find a nonzero pivot in row 1 that we will use for elimination in this
column. But in contrast to Gauss elimination, we first apply a row division in order to
make the pivot equal to 1, and only after that eliminate the nonzero entries in column 1
(which then requires no further divisions):

A =

2 4 2 2 −2
6 12 6 7 1
4 8 2 2 6

 (r = 0)

divide (row 1) by 2: ↓1 2 1 1 −1
6 12 6 7 1
4 8 2 2 6


subtract 6·(row 1) from (row 2): ↓1 2 1 1 −1

0 0 0 1 7
4 8 2 2 6


subtract 4·(row 1) from (row 3): ↓1 2 1 1 −1

0 0 0 1 7
0 0 −2 −2 10


As we have made a downward step, we increase r and move on to column 2:1 2 1 1 −1

0 0 0 1 7
0 0 −2 −2 10

 (r = 1)

In Gauss elimination we would now be in the ugly case where no row exchange can bring
a nonzero entry into the pivot position. However, this is a good case now. There is simply
no downward step in column 2, and we directly move on to column 3. In this column, it
is possible to make a row exchange to get a nonzero pivot:
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1 2 1 1 −1
0 0 0 1 7
0 0 −2 −2 10

 (r = 1)

exchange (row 2) and (row 3): ↓1 2 1 1 −1
0 0 −2 −2 10
0 0 0 1 7


divide (row 2) by −2: ↓1 2 1 1 −1

0 0 1 1 −5
0 0 0 1 7


Now we eliminate in column 3, but unlike in Gauss elimination, we now also eliminate
above the pivot, since REF requires that the pivot columns become standard unit vectors.1 2 1 1 −1

0 0 1 1 −5
0 0 0 1 7


subtract 1·(row 2) from (row 1): ↓1 2 0 0 4

0 0 1 1 −5
0 0 0 1 7


No elimination below the pivot is necessary here, so our downward step is done, we
increase r and move to column 4. We already have a pivot of 1 in the desired position,
so we need no row exchange and no row division. All that is left to do in this downward
step is one row subtraction: 1 2 0 0 4

0 0 1 1 −5
0 0 0 1 7

 (r = 2)

subtract 1·(row 3) from (row 2): ↓

R0 =

1 2 0 0 4
0 0 1 0 −12
0 0 0 1 7


After increasing r, we now have r = 3 (number of rows) already; further downward
steps are neither possible nor necessary, so we can stop even before having looked at
the last column. Indeed, the matrix R0 that we have now is in REF(1, 3, 4), and even in
RREF(1, 3, 4) as there are no zero rows in the end. But in general, the result of Gauss-
Jordan elimination can be a matrix R0 with some zero rows in the end. As a simple
example, think of the same starting matrix A as above, with a zero row appended in the
end.

Here is the algorithm in general.
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Theorem 3.21 (Gauss-Jordan elimination). Let A be an m×n matrix. There exists an invertible
m×m matrix M such that R0 = MA is in REF.

The matrix M turns out to be the product of all row operation matrices that we use
during elimination in order to transform the initial matrix A into the final matrix R0. We
can also compute M itself on the way, by transforming a second initial m × m identity
matrix I via the same row operations. This will result in M as a second final matrix. In
our example above, we get

M =

−1
2

0 1
2

4 −1 −1
2

−3 1 0

 .

You can check that indeed, R0 = MA for A in (3.9) and R0 the result of elimination as
obtained on the previous page.

Proof. We proceed by induction on n where the base case is n = 0. If you have not looked
into Exercise 2.24, you may wonder what an m × 0 matrix looks like, a matrix with no
columns. But whatever it looks like, it is in REF() with r = 0 according to Definition 3.19,
so M = I works. Indeed, the definition in this case requires something “for i = 1, 2, . . . , r”
in (i) and “for all i, j” in (ii). This means that there are in fact no requirements, since there
are no applicable i in (i) and no applicable pairs (i, j) in (ii); see also the remark after
Definition 2.3. If you don’t like the base case n = 0, you can also convince yourself that
any m×1 matrix can be transformed to REF, for example by repeating the induction step
below to handle this case.

Now we consider n > 0 and assume that the statement already holds for all m×(n−1)
matrices. Then we can write A as

A =

 A′︸︷︷︸
m×(n−1)

|
v
|


and use the induction hypothesis to get R′

0 = M ′A′ where R′
0 is in REF and M ′ is invert-

ible. Under the hood, the induction hypothesis has already performed elimination in all
but the last column of A: We have

M ′A =

 R′
0︸︷︷︸

m×(n−1)

|
w
|

 ,

where w = M ′v. Let R′
0 be in REF(j1, j2, . . . , jr). Then M ′A looks like in Figure 3.5 (left).

There are two cases: if wi = 0 for all i > r, we are done; see Figure 3.5 (middle). In this
case, M ′A is also in REF(j1, j2, . . . , jr), so we can set M = M ′ to conclude that R0 = MA
is in REF. This case also happens if r = m in which case there are no applicable i > r.

In the other case, there is some i > r such that wi ̸= 0, indicated by ⋆ in Figure 3.5
(right). In this case, we do some more row operations to transform M ′A into REF. We
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w1

w2
...
wr−1

wr

wr+1
...
wm

0

0
...
0

1

w1

w2
...
wr−1

wr

0
...
0

0

0
...
0

1

w1

w2
...
wr−1

wr
...
⋆
...

0

0
...
0

1

Figure 3.5: Matrix M ′A is in REF, except possibly the last column (left). There are two
cases: wi = 0 for all i > r (middle), or there is some i > r such that wi ̸= 0 (right).

first perform a row exchange (if necessary) to get ⋆ into row r + 1; see Figure 3.6 (left).
This does not affect the previous columns since they have zero entries in rows i > r. Let
M1 be the corresponding (invertible) row operation matrix.

w1

w2
...
wr−1

wr

⋆
...
...

0

0
...
0

1

w1

w2
...
wr−1

wr

1
...
...

0

0
...
0

1

0

0
...
0

1

0

0
...
0

0

1

Figure 3.6: Performing row operations to transform M ′A into REF: a row exchange (left),
a row division (middle), and eliminations in the last column (right)

Next, we perform a row division which divides a row by a nonzero scalar. Here, we
divide row r + 1 by ⋆ so that ⋆ turns into 1; see Figure 3.6 (middle). Again, this does
not change the previous columns, since ⋆ is the only nonzero entry in this row. Like all
other row operations, a row division is undoable (multiply the row by ⋆!) and is therefore
realized by an invertible row operation matrix M2. Concretely, M2 results from the m×m
identity matrix by replacing the 1 in row r + 1 and column r + 1 with 1/⋆.

Finally, we perform eliminations: subtract suitable multiples of row r+1 from all other
rows, also the ones above row r + 1, so that the last column is transformed into er+1; see
Figure 3.6 (right). As before, this leaves the previous columns untouched. Let M3 be the
product of all elimination matrices needed for the eliminations.

The matrix R0 resulting after all the row operations is now in REF(j1, j2, . . . , jr, jr+1)

108



with jr+1 = n and satisfies
R0 = M3M2M1M

′︸ ︷︷ ︸
M

A = MA,

where M—as a product of invertible matrices—is invertible; see Lemma 3.9.

From R0 as obtained from A through Gauss-Jordan elimination, we can directly read
off the independent columns of A.

Lemma 3.22. Let A be an m × n matrix, M an invertible m × m matrix, and R0 = MA in
REF(j1, j2, . . . , jr). Then A has independent columns j1, j2, . . . , jr.

Proof. We will argue that A and R0 = MA have their independent columns at the same
positions. Then the statement follows since R0 has independent columns j1, j2, . . . , jr, as
shown in the proof of Observation 3.20.

The argument is a refinement of what we did in Corollary 3.4 to prove that multipli-
cation with a row operation matrix does not affect linear independence of the columns.

Column j of A is independent if and only if there exists a vector x ∈ Rn such that

Ax = 0, xj = −1, xk = 0 for k > j.

Indeed, after adding the j-th column of A to both sides of Ax = 0, this expresses
column j as a linear combination of the previous columns.

Similarly, column j of R0 is independent if and only if there is x ∈ Rn such that

R0x = 0, xj = −1, xk = 0 for k > j.

Now, if such a vector exists for A, the same vector also works for R0 = MA, and vice
versa: since M is invertible, Ax = 0⇔ MAx = 0 (this is Lemma 3.3 applied with b = 0).
Hence, A and R0 = MA have their independent columns at the same positions.

It is worthwhile to understand what Gauss-Jordan elimination does on an invertible
m×m matrix A. In this case, all columns are independent, so by the previous Lemma, the
resulting m×m matrix R0 is in REF(1, 2, . . . ,m), and hence equal to the identity matrix I .
So we have R0 = I = MA, and this means that the matrix M in Theorem 3.21 is actually
the inverse of A.

3.5.4 Runtime

We have shown that Gauss elimination on an invertible m×m matrix A needs time O(m3),
see Theorem 3.6. For Gauss-Jordan elimination, we have two more parameters: n, the
number of columns of A, and r, the rank of A. The following result gives the runtime
depending on these three parameters. If n = r = m, we again get O(m3). Hence, using
Gauss-Jordan elimination on an invertible m×m is only by a constant factor slower than
Gauss elimination. It will be slower, since it does more work in this case: reduce A to the
identity matrix I instead of an upper triangular matrix U .
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Theorem 3.23. Let A be an m× n matrix of rank r, and let b ∈ Rm.

(i) Using Gauss-Jordan elimination, A can be transformed into R0 = MA in REF as given by
Theorem 3.21 in time O(rmn+mn).

(ii) By simultaneously transforming the m×m identity matrix using the same row operations,
M = MI can be computed in additional time O(rm2 +m2).

(iii) Given M , the system Ax = b can be solved in time O(m2).

Proof. The analysis for (i) and (ii) is similar as for Gauss elimination (Section 3.2.4); except
that we count the steps much less exactly—the big-O lets us get away with this. In each
of the r downward steps, we update some matrix entries. As there are mn entries in A,
the bound in (i) follows, where the extra mn account for handling the columns in which
we do not make downward steps. The bound in (ii) is simply (i) applied with n = m.

For (iii), we compute the matrix-vector product c = Mb which can be done in O(m2)
time; this is easy to see using the definitions of matrix-vector multiplication in Section 2.1.1.
After this, we directly solve R0x = c, see Section 3.5.2. Knowing the independent column
indices j1, j2, . . . , jr of R0 from its shape, this can actually be done in time O(m) which is
dominated by O(m2). Now we also have a solution of Ax = b, or we know that there is
no solution. The two systems are equivalent, since Ax = b and R0x = c are obtainable
from each other by premultiplication of both sides with M and M−1, respectively.

If m ≤ n, then (ii) does not lead to much extra work. If m > n (A is tall and skinny),
however, this step may cost more time than (i). If r and n are both small, the extra work
for computing the m×m matrix M is significant.

In this case, we can skip (ii) and solve Ax = b via a replay approach: remembering
the row operations we did in the r downward steps in (i) and applying them again to b,
we only need O(rm) time to transform b into c = Mb and O(m) time to directly solve
R0x = c.

3.5.5 Computing the CR decomposition

In Theorem 2.23, we have introduced the CR decomposition of an m × n matrix A. This
writes A as

A = C︸︷︷︸
m×r

R︸︷︷︸
r×n

,

where r is the rank of A, the matrix C contains the independent columns of A, and col-
umn j of R tells us how column j of A can be expressed as a linear combination of the
independent columns. We have also seen that there is a unique such matrix R. What we
left open is how to systematically compute it. Here is the answer.

Theorem 3.24. Let A be an m× n matrix and let A = CR as in Theorem 2.23. Let R0 = MA in
REF(j1, j2, . . . , jr) be the result of Gauss-Jordan elimination on A, see Theorem 3.21.

Then R results from R0 by removing the zero rows at the end (if there are any); in particular,
R is in RREF(j1, j2, . . . , jr), and C is the submatrix of A with columns j1, j2, . . . , jr.
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This may be a bit surprising. Upfront, it is not clear what CR decomposition has to
do with Gauss-Jordan elimination. The theorem also implies that the result R0 of Gauss-
Jordan elimination is unique, despite the fact that there are some choices in the algorithm
that could potentially influence the result. These choices concern the row exchanges. If in
some step, there is more than one nonzero entry ⋆ below a zero pivot, then there is more
than one way to bring a nonzero entry up. But apparently, it doesn’t matter which entry
we bring up. This is also easy to see directly if we review the proof of Theorem 3.21 with
this aspect in mind.

Before we prove the theorem, let’s check it on an example. In Section 2.2.3, we have
considered

A =

1 2 0 3
2 4 1 4
3 6 2 5


and manually computed

A =

1 0
2 1
3 2


︸ ︷︷ ︸

C

[
1 2 0 3
0 0 1 −2

]
︸ ︷︷ ︸

R

.

To get R0, we apply Gauss-Jordan elimination on A. This is a particularly simple case,
since no row exchanges and row divisions are necessary, and also no eliminations above
the pivot:

A =

1 2 0 3
2 4 1 4
3 6 2 5


elimination in column 1: ↓1 2 0 3

0 0 1 −2
0 0 2 −4


elimination in column 3: ↓

R0 =

1 2 0 3
0 0 1 −2
0 0 0 0


After removing the zero row in the end, we indeed have R in this case.

Proof of Theorem 3.24. Let R0 = MA be in REF(j1, j2, . . . , jr). Plugging in A = CR gives

R0 = MCR,

where C is the submatrix of A containing columns j1, j2, . . . , jr: these are the independent
ones by Lemma 3.22. Hence, MC is the submatrix of MA = R0 containing columns
j1, j2, . . . , jr. By Definition 3.19 of REF, these columns are the unit vectors e1, e2, . . . , er.
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Therefore,

R0 = MCR =


I︸︷︷︸

r×r

0︸︷︷︸
(m−r)×r


︸ ︷︷ ︸

MC

R =


R︸︷︷︸
r×n

0︸︷︷︸
(m−r)×n


︸ ︷︷ ︸

R0

Since R0 has exactly m − r zero rows at the end (one for each row i > r), R is indeed R0

without the zero rows in the end.

There was another question we asked in Section 2.2.3: what is the CR decomposition
good for? We will shed some light on this in Section 4.3).

112



Chapter 4

The Four Fundamental Subspaces

4.1 Vector spaces

In this section, we finally reveal the truth about vectors: thinking of them as arrows in
some space Rm provides an incomplete picture. We introduce the abstract concept of
a vector space and see that the Rm’s form just one species in a whole fauna of vector
spaces (an important species, though). The abstraction also allows to view subspaces
such as the column space of a matrix as vector spaces themselves.

So far, we have said that vectors are elements of some space Rm, and for m = 2, 3, we
have drawn them as arrows in the 2-dimensional plane or in 3-dimensional space. But
this is by far not the full picture. So what is a vector, really?

To approach this, we resort to an analogy: Asking someone what a mammal is might
bring up the answer “a cat, for example.” A more elaborate answer may also include
other examples such as dogs, whales, lions, and humans. But this kind of answer doesn’t
define a mammal. Let’s ask Wikipedia what a mammal is. Here is the answer:1

A mammal [. . . ] is a vertebrate animal of the class Mammalia. Mammals are
characterized by the presence of milk-producing mammary glands for feeding
their young, [. . . ]

This is not a definition of an individual mammal, but of the class of mammals: what
is it that makes a mammal a mammal? This is what we need to know in order to really
understand mammals. The species of cats is just one of many in the class of mammals.

Coming back to vectors: Saying that a vector is an element of some Rm is actually like
saying that a mammal is a cat. Both statements are false, but in case of vectors, we can
blame it on ignorance: so far, we simply haven’t seen any “species” of vectors beyond
the Rm’s. But such species exist in other corners of the world of mathematics (we will
discover one of them soon). Knowing this, the more fundamental question arises: what

1https://en.wikipedia.org/wiki/Mammal, accessed August 27, 2024
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do they have in common? What is it that that makes a vector a vector? Here is the high-
level answer, in the same spirit as the Wikipedia definition of a mammal:

A vector is an element of a vector space. Vector spaces are characterized by
the presence of two operations on their elements: vector addition and scalar
multiplication.

Table 4.1 summarizes the situation.

vectors mammals

individual
x

y [
4

1

]
0

breed R2 Bombay cat
species all Rm’s cats

class vector spaces Mammalia
characterization

of the class
vector addition,

scalar multiplication
milk-producing

mammary glands

Table 4.1: Vectors vs. mammals

4.1.1 Definition and examples

After this high-level definition, here comes the actual definition of a real vector space. The
word real doesn’t stand for true or proper, but indicates that this is a vector space where
the scalars are real numbers. Each Rm is a real vector space, but immediately after the
definition, we will see a new “species.” There are also vector spaces where the scalars
are other kinds of numbers (complex numbers are an important case, and so are bits, the
elements of the set {0, 1}), but we will not discuss them here. So we omit the word real
and simply say vector space.

Don’t be scared by the length of the definition; in particular, you will not be asked to
learn the axioms by heart. You can look them up whenever needed.

Definition 4.1 (Vector space). A vector space is a triple (V,+, ·) where V is a set (the vectors),
and

+ : V × V → V is a function (vector addition),
· : R× V → V is a function (scalar multiplication),

satisfying the following axioms of a vector space for all u,v,w ∈ V and all λ, µ ∈ R.
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1. v +w = w + v commutativity
2. u+ (v +w) = (u+ v) +w associativity
3. There is a vector 0 such that v + 0 = v for all v zero vector
4. There is a vector −v such that v + (−v) = 0 negative vector
5. 1 · v = v identity element
6. (λ·µ)v = λ · (µ · v) compatibility of · and · in R
7. λ(v +w) = λv + λw distributivity over +
8. (λ+µ)v = λv + µv distributivity over + in R

Here, we use red color to indicate that there are two different “+”, and also two differ-
ent “·”. The red ones stand for the normal addition and multiplication of real numbers.
The black ones are for vector addition and scalar multiplication. We will omit the color-
ing (and even the “·”) in the following, but there is (hopefully) only limited potential for
confusion. After all, if you want to know which “+” or “·” is meant in a given context,
you simply need to check what is on the left side and the right side. We have done this
kind of overloading before when we used the normal multiplication symbol “·” also for the
scalar product of two vectors, as in v ·w.

Now for the actual axioms: most of them seem obvious. Well, in Rm, they are indeed
(more or less) obvious, given how we have defined vector addition and scalar multiplica-
tion.

Observation 4.2. (Rm,+, ·), with “+” as in Definition 1.1 and “·” as in Definition 1.3, is a
vector space.

Previously, we have called this vector space Rm which—in hindsight—is an abuse of
notation. But this is acceptable, since our “+” and “·” are what mathematicians call the
canonical (accepted standard) choices for vector addition and scalar multiplication in Rm,
so there is no strict need to mention them.

But in general, V could be any set, with + and · defined in non-canonical ways, so
we explicitly need to include these functions and also make sure that they behave as
expected, where the expectations come from what happens inRm. This is what the axioms
are for.

To illustrate the concept, we exhibit a new breed, the vector space of real polynomials
in one variable. This belongs to the species of polynomials in several variables, but here
we restrict to one variable. As for vector spaces, we omit the word real, since we do not
consider any other polynomials in this course.

Definition 4.3 (Polynomial). A polynomial p is a sum of the form

p =
m∑
i=0

pix
i,

for some m ∈ N. Here x is a variable, and the numbers p0, p1, . . . , pm ∈ R are the coefficients of
p. The largest i such that pi ̸= 0 is the degree of p. If all pi are 0, we have the zero polynomial
0 = 0 whose degree we define to be −1.
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We note that m doesn’t have to be the same for all polynomials, but for every polyno-
mial, we have some m. For example, p = 2x2 + x + 1 is a polynomial of degree 2, and
q = 5x− 2 is a polynomial of degree 1.

To turn the set of polynomials into a vector space, we need to define addition of two
polynomials, and multiplication of a polynomial with a scalar. There are canonical ways
of doing this. In the example, we would define

p+ q = 2x2 + 6x− 1,

i.e. we add corresponding powers of x. And scalar multiplication simply scales all coeffi-
cients, as in

5p = 10x2 + 5x+ 5.

Theorem 4.4. Let R[x] be the set of polynomials in one variable x. Given polynomials p =∑m
i=0 pix

i and q =
∑n

i=0 qix
i, we define p+ q to be the polynomial

p+ q =

max(m,n)∑
i=0

(pi + qi)x
i,

where we set pi = 0 for i > m and qi = 0 for i > n. For a scalar λ ∈ R, we further define λp as
the polynomial

λp =
m∑
i=0

(λpi)x
i.

Then (R[x],+, ·) is a vector space.

We omit the proof, since it is quite boring; it boils down to checking the obvious. Here
is a second example: the vector space of m × n matrices. Again, we omit the easy but
boring proof.

Theorem 4.5. Let Rm×n be the set of m × n matrices, with addition A + B and scalar multipli-
cation λA defined in the usual way, see Definition 2.2. Then (Rm×n,+, ·) is a vector space.

Proving the obvious. As boring as this may be, it is still surprising that we only need
to check 8 “obvious” axioms to guarantee proper behavior of a vector space. Indeed,
there are many other things that we expect from knowing how things work in Rm. For
example, we expect that there is only one zero vector in a vector space (V,+, ·), but this
doesn’t appear among the axioms. So we need to prove that it follows from the axioms.

Fact 4.6. Let (V,+, ·) be a vector space. V contains exactly one zero vector (a vector satisfying
axiom 3 of Definition 4.1: v + 0 = v for all v).

Proof. Take two zero vectors 0 and 0′. Then

0′ = 0′ + 0 (by axiom 3, since 0 is a zero vector)
= 0+ 0′ (by axiom 1, commutativity)
= 0 (by axiom 3, since 0′ is a zero vector).

So 0 and 0′ are equal.
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Doing this may feel a little bit like learning to walk again after a serious leg injury:
hard work for something that we have previously taken for granted. Here is another
such “relearning step.”

Fact 4.7. Let (V,+, ·) be a vector space. For every v ∈ V , there is exactly one negative vector −v
(a vector satisfying axiom 4 of Definition 4.1: v + (−v) = 0).

Proof. First of all, we need to realize that there is no way of simply computing −v as we
do it in Rm, by negating all entries. A vector v might not have any such “entries”, and
there is no “−” operator in (V,+, ·) that we could apply. In the proof, we can only use
the 8 axioms (and everything we have already derived from them). We could attempt to
compute−v as (−1)v using scalar multiplication; this can be shown to produce a negative
vector but does not rule out the existence of another negative vector. Here is how we go
about that:

Take two negative vectors u and u′ of v. Then

u′ = u′ + 0 (by axiom 3, zero vector)
= u′ + (v + u) (by axiom 4, since u is a negative of v)
= (u′ + v) + u (by axiom 2, associativity)
= (v + u′) + u (by axiom 1, commutativity)
= 0+ u (by axiom 4, since u′ is a negative of v))
= u+ 0 (by axiom 1, commutativity)
= u (by axiom 3, zero vector).

So u and u′ are equal.

Having understood why a vector space is a triple (V,+, ·) and not simply a set V of
vectors, we will continue our (now more educated) abuse of notation and still write V for
the vector space, with the understanding that vector addition and scalar multiplication
are clear from the context. We also still write 0 for the zero vector when V is clear from
the context.

4.1.2 Subspaces

Definition 4.8 (Subspace). Let V be a vector space. A nonempty subset U ⊆ V is called a
subspace of V if the following two axioms of a subspace are true for all v,w ∈ U and all
λ ∈ R.

(i) v +w ∈ U ;

(ii) λv ∈ U .

These axioms guarantee that vector addition and scalar multiplication cannot take us
out of the subspace. As a consequence, a subspace of V always contains at least the zero
vector.
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Figure 4.1: Subspaces of R3: a line through 0 (all scalar multiples of one vector); a plane
through 0 (all linear combinations of two linearly independent vectors); the right subset
is not a subspace, since it misses 0.

Lemma 4.9. Let U ⊆ V be a subspace of a vector space V . Then 0 ∈ V .

Proof. Take any u ∈ U (U is nonempty), By subspace axiom (ii), 0u = 0 ∈ U .

This proof seems quite obvious, but it is actually incomplete. While the equation
0u = 0 certainly holds in any Rm, this does not automatically mean that it holds in all
vector spaces. We need to prove it—another case of learning to walk again. We promise,
it’s the last one! In fact, the axioms of vector spaces have been carefully designed by
mathematicians before us, with the goal of ensuring that everything that seems obvious
is actually true. So we will relax and rely on this in the future.

Fact 4.10. Let V be a vector space, v ∈ V . Then 0v = 0.

Proof.

0v
= 0v + 0 (by axiom 3 of Definition 4.1, zero vector)
= 0v + (0v + (−0v)) (by axiom 4, negative vector)
= (0v + 0v) + (−0v) (by axiom 2, associativity)
= (0+0)v + (−0v) (by axiom 8, distributivity over + in R)
= 0v + (−0v) (by the rules of R)
= 0 (by axiom 4, negative vector)

Figure 4.1 gives two examples and one counterexample of subspaces of R3. Here is
a subspace of Rm that we have already encountered, without thinking about it as a sub-
space: the column space of a matrix.

Lemma 4.11. Let A be an m× n matrix. Then C(A) = {Ax : x ∈ Rn} is a subspace of Rm.

118



Proof. Let v,w be in C(A). Then there exist vectors x,y ∈ Rn such that v = Ax,w = Ay.
Hence,

A(x+ y︸ ︷︷ ︸
∈Rn

) = Ax+ Ay = v +w ⇒ v +w ∈ C(A).

This was subspace axiom (i). For axiom (ii), let λ ∈ R. Then

A( λx︸︷︷︸
∈Rn

) = λAx = λv ⇒ λv ∈ C(A).

In both chain of equalities, the first equality comes from the interpretation of matrix-
vector multiplication as a linear transformation of the vector; see Observation 2.26.

Knowing that a subspace always contains 0, we can actually say more.

Lemma 4.12. Let V be a vector space and U a subspace. Then U is also a vector space (with the
same “+” and “·” as V ).

Proof. Formally, to turn “+” and “·” into functions that work for U , we have to restrict
their domains to U ×U andR×U , respectively. The subspace axioms (i) and (ii) then also
restrict their ranges to U .

Next, we need to check the 8 axioms. All but axiom 4 are true for all vectors in V ,
since V is a vector space; in particular, they hold for all vectors in U , so there is nothing
to check. In Case of axiom 3, we are also using that 0 ∈ U (Lemma 4.9). What remains is
axiom 4: we need to make sure that for all u ∈ U ,−u is actually in U ; so far we only know
that it is in V . But this holds, since (−1)u ∈ U by subspace axiom (ii), and “obviously”
(−1)u = −u. If you are up for it, you can prove the obvious, otherwise, you can safely
believe it.

Subspaces ofR[x]. Let’s look at some subspaces ofR[x], the vector space of polynomials
(Theorem 4.4). A polynomial without constant term is a polynomial of the form

p =
m∑
i=0

pix
i where p0 = 0.

An example is x2+3x. It is clear that these polynomials form a subspace ofR[x], since the
sum of two polynomials without constant term is again a polynomial without constant
term, and so is each scalar multiple of a polynomial without constant term.

A quadratic polynomial is a polynomial p of the form

p = p0 + p1x+ p2x
2.

We do not require p2 ̸= 0, so 3x is also a quadratic polynomial. Again, it is easy to see that
the quadratic polynomials form a subspace of R[x]. In fact, this subspace looks a lot like
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R3: each quadratic polynomial p is determined by three real numbers p0, p1, p2, so we can
also describe it by a vector

vp =

p0p1
p2

 ∈ R3.

Moreover, “+” and “·” on quadratic polynomials translate to “+” and “·” on the corre-
sponding vectors:

vp+q = vp + vq, vλp = λvp.

Therefore, the subspace of quadratic polynomials is justR3 in disguise. The mathematical
term is that the two spaces are isomorphic.

This allows us an interesting view of R[x] as the union of all Rm,m = 0, 1, . . .. In this
union, we can also add vectors of different dimensions, for example11

2


︸︷︷︸

2x2+x2+1

+

[
−2
5

]
︸ ︷︷ ︸
5x−2

=

−16
2


︸ ︷︷ ︸

2x2+6x−1

.

In this sense, polynomials form a “super breed” containing Rm for all m.

Subspaces of Rm×n. Let’s turn to Rm×n, the vector space of matrices (Theorem 4.5).
Here, we first observe that this is not really a new breed of vectors spaces, as Rm×n is iso-
morphic toRmn: an m×n matrix is one way of grouping mn numbers, an mn-dimensional
vector is another way. In both cases, vector addition and scalar-multiplication are defined
entry-wise, so it doesn’t really matter how we group the numbers.

The difference is really in how we think about vectors and matrices. A vector in Rmn

is a “flat” 1-dimensional array, while a matrix in Rm×n is a 2-dimensional array of rows
and columns; see also Section 3.1.2 on computer vectors and matrices.

The 2-dimensional view leads to subspaces that would not make intuitive sense in a
1-dimensional array. For the examples, we consider R2×2.

Our first subspace is the set of symmetric matrices, the ones of the form[
a b
b d

]
.

To see that this is a subspace, it suffices to observe that the sum of two symmetric matrices
is symmetric, and that scaling a symmetric matrix keeps it symmetric. The second and
slightly more creative example are the matrices of trace 0, the ones of the form[

a b
c d

]
, where a+ d = 0.

Generally, the trace of a square matrix is the sum of the diagonal elements. Again, it is
easy to see that the subspace axioms are satisfied. However, matrices of trace 1 do not
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form a subspace, and there are many other non-subspaces, for example the invertible
matrices, the ones of rank 1, etc. Try to find violations of the subspace axioms for all of
them!

4.2 Bases and dimension
The dimension of a vector space is an important measure of its complexity. So far,
we only have an intuitive understanding of dimension, according to which Rm has
dimension m. In this section, we first define bases of vector spaces and prove via
the Steinitz exchange lemma that all bases have the same size. This allows us to
define the dimension of a vector space as the size of any basis of it. Moroever, a basis
provides a compact description of the vector space; computing a vector space means
to compute a basis of it.

From working with the vector spaces Rm, we have an intuitive understanding of di-
mension. According to this, Rm has dimension m. But if V is some other vector space, we
may not have such an intuition, so we need to define the dimension of a vector space. We
expect this definition to tell us that Rm indeed has dimension m.

But for example, what is the dimension of the vector space of polynomials introduced
in Section 4.1.1)? As it “contains” Rm for all m, we expect the dimension to be infinite.

4.2.1 Bases

The crucial concept here is that of a basis. A basis of a vector space V consists of linearly
independent vectors whose span is V (see Section 1.3.3 for the definition of span). Previ-
ously, we have defined linear independence and span for a sequence of vectors, and only
in Rm. This was important to handle for example the sequence of columns of a matrix
that may contain duplicates. But here, sets of vectors turn out to be more practical. So
we start by recalling the definitions of linear combination, linear independence and span,
adapted for a set of vectors in a general vector space. At the same time, we extend them
such that we can also handle infinite sets.

Definition 4.13 (Linear combination of a set of vectors). Let V be a vector space, G ⊆ V a
(possibly infinite) subset of vectors. A linear combination of G is a sum of the form∑

v∈F

λvv,

where F ⊆ G is a finite subset of G and λv ∈ R for all v ∈ F .

Summing over all elements of a set as in
∑

v∈F λvv is in general not well-defined, since
a set does not have an order of its elements. But if the result of the summation is the same
for every possible order, this notation can be used. Here, this is the case, since vector
addition is commutative (axiom 1 in Definition 4.1).
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A linear combination can also be written in the usual way, namely as
∑

v∈G λvv, and
requiring that only finitely many λv are nonzero.

Here is an important fact. It is obvious in any Rm, but for a general vector space, we
have to prove it.

Lemma 4.14. Let V be a vector space, G ⊆ V . Every linear combination of G is again in V .

Proof. Let
∑

v∈F λvv be a linear combination, |F | = n. Enumerating the elements of F in
arbitrary order v1,v2, . . . ,vn, we can write the combination as

∑n
j=1 λjvj .

Since V is a vector space, we have wj := λjvj ∈ V for all j, by definition of the
scalar multiplication (function · : R× V → V ). By definition of vector addition (function
+ : V ×V → V ), we also have w1+w2 ∈ V . Applying this again yields (w1+w2)+w3 ∈ V ,
and so on, until we get the desired conclusion w1 +w2 + · · ·+wn ∈ V . (Under the hood,
this is a proof by induction, and it uses the “obvious” fact that brackets can be omitted in
writing down a sum of vectors).

You may wonder why we do not allow infinite linear combinations. Infinite sums in
themselves can be defined, you may for example know the formula

∞∑
i=0

xi =
1

1− x
for x < 1.

The problem is that Lemma 4.14 may fail for infinite linear combinations, and we don’t
want this. Consider the vector space of polynomials R[x], and let G be the infinite subset
of unit monomials: 1, x2, x3, . . .. With λp = 1 for all p ∈ G, we get the infinite “linear
combination” ∑

p∈G

λpp =
∞∑
i=0

xi.

This is not a polynomial. The vector space axioms only imply that finite linear combina-
tions of vectors are again vectors, but infinite ones may be undefined or take us out of the
vector space, as we have just seen.

With linear combinations as in Definition 4.13, we can now define span and linear
independence in the usual way.

Definition 4.15 (Span and linear independence of sets of vectors). Let V be a vector space,
G ⊆ V a (possibly infinite) subset of vectors.

The span of G, written as Span(G), is the set of all linear combinations of G. The set G is
called linearly independent if no vector v ∈ G is a linear combination of G \ {v}.

Now we can formally define a basis.

Definition 4.16 (Basis). Let V be a vector space. A subset B ⊆ V of vectors is called a basis of
V if B is linearly independent and Span(B) = V .
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Examples. The set {e1, e2, . . . , em} of standard unit vectors (Section 1.2.2) is a basis of
Rm. For example, if m = 2, then

e1 =

[
1
0

]
, e2 =

[
0
1

]
.

These two vectors are linearly independent and span R2: for every vector

v =

[
v1
v2

]
∈ R2,

we have v = v1e1 + v2e2. For general m, the standard unit vectors are seen to be linearly
independent by the private nonzero argument: every standard unit vector has a nonzero
entry (a 1-entry, actually) at a coordinate where all other standard unit vectors have 0-
entries. We call such an entry a private nonzero. A vector with a private nonzero cannot
be a linear combination of the other ones, and if every vector has a private nonzero, the
vectors are linearly independent.

Lemma 4.17. Let A be an m× n matrix. The set of independent columns of A (Definition 2.9) is
a basis of the column space C(A).

Proof. C(A) is a subspace by Lemma 4.11. The independent columns are in the column
space and linearly independent: by definition, no independent column is a linear combi-
nation of the previous columns, and this means that the independent columns are in fact
linearly independent; see Corollary 1.20. Furthermore, the independent columns span
the column space, as we have shown in Lemma 2.10.

For the subspace of symmetric 2× 2 matrices[
a b
b d

]
,

the following set of three symmetric matrices is a basis.{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
.

They are linearly independent: every matrix has at least one private nonzero, a 1-entry
where all other matrices have 0-entries. It remains to observe that every symmetric matrix
is a linear combination of these three matrices:[

a b
b d

]
= a

[
1 0
0 0

]
+ b

[
0 1
1 0

]
+ d

[
0 0
0 1

]
.

For the trace-0 matrices [
a b
c d

]
, a+ d = 0,
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a basis is {[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
.

Linear independence is again easy due to private nonzeros, and as d = −a in a trace-0
matrix, we can obtain every trace-0 matrix as a linear combination:[

a b
c −a

]
= a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
.

For the vector space R[x] of polynomials, the infinite set of unit monomials

{xi : i = 0, 1, . . .}

is a basis. By Definition 4.3, every polynomial is a linear combination of unit monomials
(observe that x0 = 1). It remains to argue that the unit monomials are linearly indepen-
dent. Indeed, every unit monomial xi has its private nonzero, the i-th power of x and can
therefore not be obtained as a linear combination of other monomials.

The subspace of polynomials without a constant term has

{xi : i = 1, 2, . . .}

as a basis, and for the subspace of quadratic polynomials, a basis is

{1, x, x2}.

Finally, what is the basis of {0}, the smallest possible subspace of a given vector space?
It is the empty set . Indeed, this is linearly independent by Definition 4.15: in the empty
set, no vector is a linear combination of the others. And Span(∅) = {0}, since an empty
sum yields 0; see the discussion in Section 1.1.5.

There are typically many bases. The above examples should not trick us into believing
that there is always only one basis of a vector space. For example, {e1, e2, . . . , em} is the
canonical basis of Rm, but there are many other choices.

Observation 4.18. Every set B = {v1,v2, . . . ,vm} of m linearly independent vectors is a basis
of Rm.

Proof. B is linearly independent, so we only need to show that Span(B) = Rm, meaning
that every vector v ∈ Rm is a linear combination of B. For this, let A be the m × m
matrix with (linearly independent) columns v1,v2, . . . ,vm. By Theorem 3.11, Ax = v has
a unique solution x, and

v =
m∑
j=1

xjvj︸ ︷︷ ︸
Ax

is the desired linear combination of B.
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As a second example, let us consider the column space C(A) of a matrix A. In Sec-
tion 2.2.3, we have computed the independent columns of

A =

1 2 0 3
2 4 1 4
3 6 2 5

 .

These are the first and the third column, so these two columns form a basis of C(A). But
we could also have defined the “backwards independent” columns, by going through the
columns of A from right to left, and selecting a column if it is not a linear combination of
the ones succeeding it. This also results in a basis of C(A), by the same arguments as for
the “forward independent” columns. If we do this in our example, we end up with the
fourth and the third column as a basis.

More generally, we could go through the columns in any order and pick up the ones
that are not linear combinations of the ones previously considered. This potentially gives
us many different bases of C(A).

However, what we find in bothRm and C(A) is that the alternative bases still have the
same number of vectors: m in case ofRm and 2 in case of the column space example. In the
next section, we prove that this is not a coincidence but true for every vector space.

4.2.2 The Steinitz exchange lemma

Let V be a vector space, and suppose that F ⊆ V is a finite set of linearly independent
vectors, and G ⊆ V a finite set of vectors with Span(G) = V . The Steinitz exchange
lemma makes two statements. The first one is that |F | ≤ |G|. This makes sense: In R2, for
example, we can have at most 2 linearly independent vectors, and it takes at least 2 vectors
to span R2.

The second stament sounds a bit technical: we can enlarge F by elements from G such
that the enlarged set has at most the size of G and also spans V . The name of the lemma
comes from the fact that we can think of this as “exchanging elements between G and F”.

Lemma 4.19 (Steinitz exchange lemma). Let V be a vector space, F ⊆ V a finite set of linearly
independent vectors, and G ⊆ V a finite set of vectors with Span(G) = V . Then the following
two statements hold.

(i) |F | ≤ |G|.

(ii) There exists a subset E ⊆ G of size |G| − |F | such that Span(F ∪ E) = V .

Note that the set E in (ii) is allowed to contain elements of F . In this case, |F∪E| < |G|.
There is a stronger version of the lemma in which we require E ⊆ G \ F , and this always
leads to |F ∪ E| = |G|. But we will not need this.
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Proof. We adapt the proof from Wikipedia.2 The proof is by induction on f = |F |. The
base case is f = 0 in which case F is the empty set. Then (i) is clear and for (ii), we chose
E = G.

If f > 0, pick an arbitrary vector u ∈ F , set F ′ = F \ {u}, and let g = |G|. Note that F ′

is also linearly independent. By the induction hypothesis, we have

(i) g ≥ f − 1.

(ii) There exists a subset E ′ ⊆ G of size g − (f − 1) with Span(F ′ ∪ E ′) = V .

Since u ∈ V = Span(F ′ ∪ E ′), there are scalars λv,v ∈ F ′ ∪ E ′ such that

u =
∑

v∈F ′∪E′

λvv. (4.1)

There must be some w ∈ E ′ with λw ̸= 0. Indeed, since F is linearly independent,
u is not a linear combination of F ′ = F \ {u} (Definition 4.15). This shows that |E ′| =
g − (f − 1) ≥ 1, so we get g ≥ f which already proves (i) for size f .

To show (ii) for size f , we remove w from E ′ to obtain E. This set has the required size
g − f , and it remains to prove that Span(F ∪ E) = V .

Towards this, we solve (4.1) for w:

w =
1

µw

(
u−

∑
v∈F ′∪E

λvv

)
.

Thus, w is a linear combination of {u} ∪ F ′ ∪ E = F ∪ E, and by Lemma 1.23, this means
that

Span(F ∪ E) = Span(F ∪ E ∪ {w}︸ ︷︷ ︸
F∪E′

). (4.2)

Formally, we would need a version of Lemma 1.23 for general vector spaces, and for finite
sets instead of finite sequences. But we skip this (the proof would be the same as before).

Recall from (4.1) that u is a linear combination of F ′ ∪ E ′, so Lemma 1.23 also gives

Span(F ′ ∪ E ′) = Span(F ′ ∪ E ′ ∪ {u}︸ ︷︷ ︸
F∪E′

). (4.3)

Putting together (4.2) and (4.3), and using the inductive hypothesis, we get

Span(F ∪ E) = Span(F ′ ∪ E ′) = V.

The Steinitz exchange lemma has an important corollary. Because of its importance,
we also call it a theorem. It confirms what we have observed in examples before: even if
a vector space has different bases, all of them have the same number of vectors.

2https://en.wikipedia.org/wiki/Steinitz_exchange_lemma, accessed August 5, 2024
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Theorem 4.20. Let V be a vector space and B,B′ ⊆ V two finite bases of V . Then |B| = |B′|.

Proof. By Definition 4.16 of a basis, B and B′ are linearly independent, and Span(B) =
Span(B′) = V . Then, statement (i) of the Steinitz exchange lemma with F = B,G = B′

yields |B| ≤ |B′|; with F = B′, G = B, we get |B′| ≤ |B|.

There are vector spaces that do not have finite bases, such as the vector space R[x]
of polynomials defined in Section 4.1.1. While the theorem as presented here does not
apply to such vector spaces, it can be generalized to the infinite case where |B| = |B′|
then means “the same kind of infinity.”

A more fundamental question is this: does every vector space even have a basis? The
answer is yes, even in the infinite case. Proving this involves some machinery that is
standard but beyond the scope of these notes. The Wikipedia article about bases of vector
spaces is a good entry point for further reading.3 Here we will present a proof for the
finite case. This case is defined as follows.

Definition 4.21 (Finitely generated vector space). A vector space V is called finitely gener-
ated if there exists a finite subset G ⊆ V with Span(G) = V .

For example, Rm is finitely generated (by G = {e1, e2, . . . , em}) but R[x], the vector
space of polynomials, is not.

Theorem 4.22. Let V be a finitely generated vector space, and let G ⊆ V be a finite subset with
Span(G) = V . Then V has a basis B ⊆ G.

Proof. This is what we call an “algorithmic proof’.” It constructs B by an algorithm. Here
is how it goes.

If G is linearly independent, B = G is a basis by Definition 4.16. Otherwise, there is a “line 1”
vector v ∈ G that is a linear combination of the other vectors, so we have Span(G\{v}) =
Span(G) = V via Lemma 1.23. Then we replace G with G \ {v} (which still spans V ) and
go back to line 1. As G gets smaller in every step, this must eventually stop and produce
a basis.

A formal correctness proof would go via a precise formulation of the algorithm, either
as a loop (correctness proof with loop invariants), or a recursive algorithm (correctness proof
by induction). The latter approach is very close to directly proving the theorem by induc-
tion on g = |G| (this is a good exercise). Our proof above, while hopefully being clear and
easy to understand, is of a somewhat informal “and-so-on” nature, but knowing how we
could make it formal if necessary, this is acceptable.

4.2.3 Dimension

Now we can define the dimension of a vector space, at least if it is finitely generated.

3https://en.wikipedia.org/wiki/Basis_(linear_algebra), accessed August 5, 2024
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Definition 4.23 (Dimension). Let V be a finitely generated vector space. Then dim(V ), the
dimension of V , is the size of any basis B of V .

This definition uses that every finitely generated vector space has a basis to begin with
(Theorem 4.22), and that all bases have the same size (Theorem 4.20).

From the examples of bases in Section 4.2.1, you can therefore immediately deduce the
dimensions of the corresponding vector spaces. As expected, dim(Rm) = m.

Figure 4.2 shows three subspaces ofR3, of dimensions 0 (point), 1 (line), and 2 (plane).

x

y

z

x

y

z

x

y

z

Figure 4.2: Three subspaces of R3: The unique subspace of dimension 0—the point at the
origin with an empty basis (left); a subspace of dimension 1—a line through the origin
with a basis of size 1 (middle); a subspace of dimension 2—a plane through the origin
with a basis of size 2 (right)

We also have the following result that simplifies basis checks: if dim(V ) many vectors
are linearly independent, we already know that their span is V , and the other way around.
In both cases, the set can therefore be identified as a basis, from only one of the basis
axioms in Definition 4.16.

Lemma 4.24. Let V be a vector space with dim(V ) = d.

(i) Let F ⊆ V be a set of d linearly independent vectors. Then F is a basis of V .

(ii) Let G ⊆ V be a set of d vectors with Span(G) = V . Then G is a basis of V .

Proof. For (i), let G be a basis of V . Since Span(G) = V , the Steinitz exchange Lemma 4.19
applies with F and G, but since |F | = |G| = d, the set E in part (ii) can only be the empty
set. Hence, Span(F ) = Span(F ∪ E) = V , and F is a basis according to Definition 4.16.

For (ii), we use Theorem 4.22 which guarantees a basis B ⊆ G of size d. But since
|B| = |G| = d, we must have B = G, so G itself is a basis.
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4.3 Computing the fundamental subspaces

An m×n matrix A defines four fundamental subspaces. Column space and row space
are two of them, and here we introduce the other two: nullspace and left nullspace.
We show how they can be computed by which we mean to find bases for them. Once
we have such bases, we also know the dimensions of the fundamental subspaces,
and how they relate to each other: If r = rank(A), both row and column space
have dimension r, while the nullspace has dimension n − r, and the left nullspace
has dimension m − r. We finally apply these results to understand the space of all
solutions of a system of linear equations Ax = b.

A vector space V typically contains infinitely many vectors. But if V is finitely gener-
ated, we can compute a basis of it. Such a basis is a finite representation of V in the sense
that it allows us to describe all elements of V : these are simply all linear combinations of
the basis. Moreover, for every v ∈ V , there is a unique such linear combination by (the
vector space version of) Lemma 1.21. By computing a vector space, we mean to compute a
basis of it.

Figure 4.2 visualizes this representation by a basis: knowing the basis vectors, the
space in question is uniquely determined.

For a given m × n matrix A, we now want to compute the four fundamental subspaces
C(A) (column space), R(A) (row space), N(A) (nullspace) and LN(A) (left nullspace). If
we have bases for them, we also know the dimensions of these spaces, by Definition 4.23.
Column and row space have been introduced before (Definitions 2.8 and 2.13), but here
the focus is on looking at them at subspaces of Rm and Rn, respectively.

The key to understanding these subspaces is Gauss-Jordan elimination. In Section 3.5.3,
we have shown how this algorithm can transform every matrix A into a matrix R0 in row
echelon form (REF). As our running example, we use the one considered in Sections 2.2.3
and 3.5.5 before:

A =

1 2 0 3
2 4 1 4
3 6 2 5

 → R0 =

1 2 0 3
0 0 1 −2
0 0 0 0

 . (4.4)

From this, we have already been able to read off the CR decomposition of A that we have
previously computed manually (Section 2.2.3). Now we will see how to read off (bases
of) the fundamental subspaces.

4.3.1 Column space

We recall Definition 2.8. The column space of an m × n matrix A is the set of all linear
combinations of the columns of A,

C(A) = {Ax : x ∈ Rn} ⊆ Rm.
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The column space is sometimes also denoted by Im(A) and called the image of A. This
is because C(A) is the image of the linear transformation T (x) = Ax; see Definition 2.31.

We know from Lemma 4.11 that C(A) is a subspace. For computing it, we have already
done all the work. We summarize the situation in the following theorem.

Theorem 4.25. Let A be an m × n matrix, and let R0 in REF(j1, j2, . . . , jr) be the result of
Gauss-Jordan elimination on A, according to Theorem 3.21. Then A has independent columns
j1, j2, . . . , jr, and these form a basis of the column space C(A). Hence

dim(C(A)) = r = rank(A).

Proof. The independent columns of A form a basis of C(A) by Lemma 4.17, and using
Gauss-Jordan elimination, we can compute their positions; see Lemma 3.22, telling us
that A has independent columns j1, j2, . . . , jr.

In the running example (4.4), R0 is in REF(1, 3), so the basis B of C(A) consists of the
two independent columns 1 and 3,

B =


12
3

 ,

01
2

 .

4.3.2 Row space

The row space of an m× n matrix A is the set of all linear combinations of the rows of A;
to avoid concept repetition, we have officially defined the row space as the column space
of the transpose, see Definition 2.13:

R(A) = C(A⊤) ⊆ Rn.

From Lemma 4.11 applied to A⊤, we immediately obtain

Corollary 4.26. Let A be an m× n matrix. Then R(A) is a subspace of Rn.

We could compute R(A) = C(A⊤) via Gauss-Jordan elimination on A⊤, according
to Theorem 4.25. But the nice thing is that our previous Gauss-Jordan elimination on A
already provides us with all we need. The following lemma is the key.

Lemma 4.27. Let A be an m × n matrix and M an invertible m × m matrix. Then R(A) =
R(MA).

Proof. We need to prove that C(A⊤) = C((MA)⊤). Since (MA)⊤ = A⊤M⊤ (Lemma 2.19)
and N := M⊤ is also invertible (Lemma 3.10), we set B := AT and prove C(B) = C(BN)
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as follows:
v ∈ C(B)
⇕

v = Bx for some x ∈ Rm

⇑ ⇓ ← y := N−1x ⇔ x := Ny
v = BNy for some y ∈ Rm

⇕
v ∈ C(BN).

Using this, a basis of R(A) can be found as follows.

Theorem 4.28. Let A be an m × n matrix, and let R0 in REF(j1, j2, . . . , jr) be the result of
Gauss-Jordan elimination on A, according to Theorem 3.21. Then the first r rows of R0 form a
basis of the row space R(A), and

dim(R(A)) = r = rank(A).

Proof. Gauss-Jordan elimination according to Theorem 3.21 provides us with a matrix
R0 = MA in REF and the same row space as A, by Lemma 4.27. From R0, a basis of
the row space can be read off immediately: R0 starts with r nonzero rows and ends with
m− r zero rows. Hence, the r nonzero rows already span the row space, and they are also
linearly independent, as each of them has a private nonzero (where the “downward step”
occurs). Finally, r = rank(A) holds by Lemma 3.22.

In our running example (4.4), the basis B is

B =
{[

1 2 0 3
]
,
[
0 0 1 −2

]}
.

This theorem has a very interesting consequence that also deserves to be called a the-
orem, although it is now simply a corollary of Theorems 4.25 and 4.28. These two the-
orems together imply that dim(C(A)) = dim(R(A)). Since R(A) = C(A⊤), we also get
dim(C(A)) = dim(C(A⊤)), meaning that both A and A⊤ have the same number of inde-
pendent columns, hence the same rank.

This is the following result that is sometimes summarized as row rank equals columns
rank.

Theorem 4.29. Let A be an m× n matrix. Then

rank(A) = rank(A⊤).

We have previously proved this in Section 2.1.4 for matrices of rank 1, but now we
know that it holds for all matrices.

We also obtain a particularly beautiful interpretation of the CR decomposition.

Corollary 4.30. Let A = CR be the CR decomposition of A (Section 2.2.3). By Theorem 4.25, the
columns of C form a basis of the column space C(A). By Theorem 4.28 together with Theorem 3.24,
the rows of R form a basis of the row space R(A). Both spaces have the same dimension r =
rank(A) = rank(A⊤).
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4.3.3 Nullspace

We now get to the third fundamental subspace defined by a matrix A.

Definition 4.31 (Nullspace). Let A be an m × n matrix. The nullspace of A is the set of all
solutions of Ax = 0,

N(A) = {x ∈ Rn : Ax = 0} ⊆ Rn.

The nullspace is sometimes also denoted by Ker(A) and called the kernel of A. The rea-
son is that N(A) is the kernel of the linear transformation T (x) = Ax; see Definition 2.31.

Lemma 4.32. Let A be an m× n matrix. Then N(A) is a subspace of Rn.

Proof. Let v,w ∈ N(A), λ ∈ R. As in the proof of Lemma 4.11 we use that A realizes a
linear transformation and directly get the subspace axioms in Definition 4.8.

A(v +w) = Av︸︷︷︸
0

+ Aw︸︷︷︸
0

= 0 ⇒ v +w ∈ N(A)

and
A(λv) = λ Av︸︷︷︸

0

= 0 ⇒ λv ∈ N(A).

Gauss-Jordan elimination also reveals the nullspace of A, with the help of the follow-
ing lemma. This is actually Lemma 3.3 “reloaded”, with b = 0; back then, we did not
know inverse matrices yet and therefore had to argue with undoing a row operation.

Lemma 4.33. Let A be an m × n matrix and M an invertible m ×m matrix. Then A and MA
have the same nullspace N(A) = N(MA).

Proof. For x ∈ Rn, we have

x ∈ N(A) ⇔ Ax = 0 ⇒ MAx = M0
⇑ ⇓

M−1MA = M−10 ⇐ MAx = 0 ⇔ x ∈ N(MA).

To show how to extract a basis of N(A) = N(R0) from the matrix R0 = MA that we
obtain from Gauss-Jordan elimination, we look at the running example (4.4) first. Here,

R0 =

1 2 0 3
0 0 1 −2
0 0 0 0

 .

We observe that N(R0) = N(R) where

R =

[
1 2 0 3
0 0 1 −2

]
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is obtained from R0 by removing the zero row at the end. Indeed, the system Rx = 0 is
equivalent to R0x = 0, since the extra equations in R0x = 0 are of the form “0 = 0” and
therefore always hold. Recall from the previous Section 4.3.2 that R is the matrix in the
CR decomposition A = CR, and that the rows of R form a basis of the row space R(A).

In the running example, the matrix R is in RREF(1, 3), hence we can write Rx = 0 as[
1 0
0 1

]
︸ ︷︷ ︸

I

[
x1

x3

]
︸︷︷︸
x(I)

+

[
2 3
0 −2

]
︸ ︷︷ ︸

Q

[
x2

x4

]
︸︷︷︸
x(Q)

= 0.

The submatrix of R with the independent columns 1, 3 is the identity matrix, and we let
Q be the submatrix of R with the dependent columns 2, 4. Furthermore, x(I) and x(Q)
denote the subvectors of x “belonging” to I and Q.

We therefore can further write Rx = 0 as

x(I) = −Qx(Q).

Solving this system is very easy: the free variables x(Q) can be substituted with arbi-
trary real numbers. The values of the basic variables x(I) are then determined via x(I) =
−Qx(Q). We have already encountered this “direct solution” approach in Section 3.5.2
for solving Ax = b when A is in REF.

Here, the goal is different: we want to compute a basis of N(R) = N(A). It turns out
that there is a basis of special solutions, the ones where x(Q) is set to one of the standard
unit vectors; see Table 4.2.

special solutions

free variables
[
x2

x4

]
︸︷︷︸
x(Q)

[
1
0

]
︸︷︷︸
v1(Q)

[
0
1

]
︸︷︷︸
v2(Q)

basic variables
[
−2 −3
0 2

]
︸ ︷︷ ︸

−Q

[
x2

x4

]
︸︷︷︸
x(Q)

=

[
x1

x3

]
︸︷︷︸
x(I)

[
−2
0

]
︸ ︷︷ ︸
v1(I)

[
−3
2

]
︸ ︷︷ ︸
v2(I)

nullspace
equation 0 =

[
1 2 0 3
0 0 1 −2

]
︸ ︷︷ ︸

R


x1

x2

x3

x4


︸ ︷︷ ︸

x


−2
1
0
0


︸ ︷︷ ︸

v1


−3
0
2
1


︸ ︷︷ ︸

v2

Table 4.2: The special solutions v1 and v2 form a basis of the nullspace N(R) = N(A).

Let’s double check on the running example (4.4) that v1,v2 as computed in Table 4.2
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are indeed in N(A). For this, we verify that

1 2 0 3
2 4 1 4
3 6 2 5


︸ ︷︷ ︸

A


−2
1
0
0


︸ ︷︷ ︸

v1

= 0, and

1 2 0 3
2 4 1 4
3 6 2 5


︸ ︷︷ ︸

A


−3
0
2
1


︸ ︷︷ ︸

v2

= 0.

But why is {v1,v2} a basis of N(R) = N(A) according to Definition 4.16? This follows
from the general argument that we make next. The notation with the double indices
might appear a bit frightening, but from the example before, it should be quite clear what
happens.

Lemma 4.34. Let R be an r × n matrix in RREF(j1, j2, . . . , .jr), meaning that R has inde-
pendent columns j1 < j2 < · · · < jr that are equal to the standard unit vectors e1, e2, . . . , er
(Definition 3.19). We let jr+1 < jr+2 < · · · < jn denote the indices of the dependent columns.

The r × r submatrix of R formed by the independent columns is the identity matrix I . We let
Q denote the r × (n− r) submatrix of R formed by the dependent columns.

For a vector x ∈ Rn, we let x(I) ∈ Rr and x(Q) ∈ Rn−r denote the subvectors

x(I) =


xj1

xj2
...
xjr

 ∈ Rr and x(Q) =


xjr+1

xjr+2

...
xjn

 ∈ Rn−r

of basic and free entries.
Let v1,v2, . . . ,vn−r ∈ Rn be the n− r vectors defined via

vi(Q) = ei and vi(I) = −Qvi(Q), i = 1, 2, . . . , n− r. (4.5)

Then {v1,v2, . . . ,vr} is a basis of N(R).

Proof. By construction, all vectors satisfy the nullspace equation Rx = 0 in its equivalent
version x(I) = −Qx(Q), so they are actually in the nullspace.

We further need to check that the vectors are linearly independent which follows from
the usual private nonzero entry argument. More concretely, already the subvectors vi(Q)
are linearly independent, as they are different standard unit vectors. The full vectors are
then linearly independent as well.

Finally, we must show that every vector in N(R) is a linear combination of the vi’s.
For this, take any vector x ∈ N(R). We claim that

x =
n−r∑
i=1

xjr+i
vi (4.6)
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is the desired linear combination. For the subvector of free entries, this reads as

x(Q) =
n−r∑
i=1

xjr+i
vi(Q)︸ ︷︷ ︸

=ei by (4.5)

(4.7)

and is therefore obvious by definition of the subvector and the vi’s. For the subvector of
basic variables, we compute

x(I)
Rx=0
= −Qx(Q)

(4.7)
= −Q

(
n−r∑
i=1

xjr+i
vi(Q)

)
=

n−r∑
i=1

xjr+i

 −Qvi(Q)︸ ︷︷ ︸
=vi(I) by (4.5)

 =
n−r∑
i=1

xjr+i
vi(I).

Together with (4.7), this shows the claim (4.6). In the third equality, we were able to
“pull Q in” due to “matrix-vector multiplication = linear transformation”; this needs the
generalization of Observation 2.26 to more vectors, as provided by Lemma 2.28.

In summary, we obtain the following result.

Theorem 4.35. Let A be an m × n matrix, and let R0 in REF(j1, j2, . . . , jr) be the result of
Gauss-Jordan elimination on A, according to Theorem 3.21. Let R in RREF(j1, j2, . . . , jr) be
the submatrix of R0 consisting of the first r rows. The vectors v1,v2, . . . .vn−r as constructed in
Lemma 4.34 form a basis of N(A) = N(R0) = N(R), and therefore,

dim(N(A)) = n− r = n− rank(A).

Proof. By Definition 3.19 of REF and RREF, R is in RREF(j1, j2, . . . , jr), so Lemma 4.34
applies and yields a basis of N(R) with n− r vectors. As R0 differs from R only by extra
zero rows, we have N(R) = N(R0). Finally, N(R0) = N(A) follows from Lemma 4.33, us-
ing that R0 = MA with M invertible, according to Theorem 3.21. As before, r = rank(A)
holds by Lemma 3.22.

4.3.4 Left nullspace

Just like the row space of a matrix A is defined as the column space of the transpose A⊤,
the left nullspace of A is defined as the nullspace of A⊤.

Definition 4.36 (Left nullspace). Let A be an m×n matrix. The left nullspace of A is the set of
all (row vector) solutions of yA = 0⊤, or equivalently, the (column vector) solutions of A⊤y = 0,
hence the nullspace of A⊤:

LN(A) := N(A⊤) ⊆ Rm.

This is called left nullspace, since it contains the solutions of a system of equations
yA = 0 where the (row) vector of variables is multiplied with A from the left.

Lemma 4.32 applied to A⊤ immediately yields
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Lemma 4.37. Let A be an m× n matrix. Then LN(A) is a subspace of Rm.

Computing the left nullspace via Gauss-Jordan elimination on A⊤ as described in the
previous Section 4.3.3 is a natural way to proceed, but as for the row space, there is a way
to derive a basis directly from Gauss-Jordan elimination on A. This involves the matrix
M , the “memory” of the row operations being performed.

Theorem 4.38. Let A be an m × n matrix, and let R0 = MA in REF(j1, j2, . . . , jr) be the
result of Gauss-Jordan elimination on A according to Theorem 3.21. Then the last m − r rows
wr+1,wr+2, . . . ,wm of the m×m matrix M form a basis of LN(A), and therefore,

dim(LN(A)) = m− r = m− rank(A).

Proof. Since R0 ends with m − r zero rows, the last m − r rows of the matrix equation
R0 = MA read as

0 =


| wr+1 |

| wr+2 |

...

| wm |

A.

This shows that wr+1,wr+2, . . . ,wm ∈ LN(A). Moreover, these vectors are linearly inde-
pendent: Since M is invertible, its columns are linearly independent (Theorem 3.11), so
rank(M) = m; therefore also rank(M⊤) = m (Theorem 4.29), so the rows of M are also
linearly independent.

It remains to show that wr+1,wr+2, . . . ,wm is a basis. By applying Theorem 4.35 to A⊤,
we already know dim(LN(A)) = dim(N(A⊤)) = m− rank(A⊤) = m− rank(A) = m− r.
Here we have used Theorem 4.29 together with the fact that A has rank r due to R0 in
REF(j1, j2, . . . , jr).

Hence, we have found m − r linearly independent vectors in the subspace LN(A) of
dimension m− r. So these vectors must be a basis by Lemma 4.24 (i).

Let’s check this in our running example (4.4) which provides the initial matrix A and
the final matrix R0 in REF(1, 3). We still need the matrix M . You can verify that it is

M =

0 2 −1
0 −3 2
1 −2 1

 .

From R0, we know that rank(A) = 2, so dim(LN(A)) = 3 − 2 = 1, and the last row of M
forms a basis of LN(A):

[
1 −2 1

] 1 2 0 3
2 4 1 4
3 6 2 5

 =
[
0 0 0

]
.
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4.3.5 The solution space of Ax = b

Having introduced and computed the four fundamental subspaces of a matrix A, we
finally come back to solving systems of linear equations. Using Gauss elimination and
back substitution (Sections 3.2.2 and 3.2.1), we have seen how to compute the unique
solution x of Ax = b when A is an invertible square matrix.

In the general case, we have applied Gauss-Jordan elimination and direct solution
(Sections 3.5.3 and 3.5.2) to either find some solution, or to conclude that there is no solu-
tion. Here, we want to understand and compute the space of all solutions.

Definition 4.39 (Solution space). Let A be an m× n matrix and b ∈ Rm. The set

Sol(A,b) := {x ∈ Rn : Ax = b} ⊆ Rn

is the solution space of Ax = b.

If b ̸= 0, Sol(A,b) is not a subspace of Rn, simply because it doesn’t contain the zero
vector (see xLemma 4.9). Let’s look at the situation where A is a 2× 1 matrix, so we have
a system in one equation and two variables. As a concrete example, consider the system

2x+ 3y = 6.

The solutions of this, all pairs (x, y) satisfying 2x+ 3y = 6, form a line in R2, not contain-
ing the origin; see Figure 4.3. Replacing the right-hand side 6 by 0 results in another line
which contains the origin and is a subspace (the nullspace of the matrix

[
2 3

]
; see Sec-

tion 4.3.3). In this example, we see that Sol(
[
2 3

]
, [6]) and Sol(

[
2 3

]
, [0]) = N(

[
2 3

]
)

are parallel lines.

x

y

2x + 3y = 6
2x + 3y = 0

Figure 4.3: Sol(A, b) for A = [2 3],b = [6] (upper line) and b = [0] (lower line).

Here is the general picture: For b ̸= 0, and if there is a solution at all, Sol(A, b) is
obtained by “shifting” the nullspace of A “away from the origin.”

Theorem 4.40. Let A be an m× n matrix, b ∈ Rm. Let s be some solution of Ax = b. Then

Sol(A,b) = {s+ x : x ∈ N(A)}.
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Hence, we can also compute Sol(A, b), despite the fact that it is not a subspace. To
describe all solutions, we just need some solution (see Section 3.5.2) and a basis of N(A)
(see Section 4.3.3).

Proof. We first show that every solution y ∈ Sol(A,b) is of the form s+ x with x ∈ N(A).
Indeed, we can write y as

y = s+ (y − s)︸ ︷︷ ︸
x

,

and due to Ax = Ay − As = b − b = 0, we have x ∈ N(A). For the other direction, we
show that every vector y of the form y = s+x with x ∈ N(A) is in Sol(A,b). For this, we
compute

Ay = As+ Ax = b+ 0 = b.

The number of solutions. A system Ax = b of linear equations has two characteristic
numbers: m, the number of equations, and n, the number of variables. Then A is an
m× n matrix. But if we want to understand the solution space, there is a third important
characteristic number r, the rank of A. This is revealed only by Gauss-Jordan elimination
on A: r is the number of “downward steps” in the row echelon form of the resulting
matrix R0; see Theorem 4.25.

If there is a solution at all, the solution space is obtained by shifting the nullspace
N(A) away from the origin (Theorem 4.40). We can then declare Sol(A,b) to be of the
same dimension as the nullspace, and this dimension is n− r by Theorem 4.35. Sol(A,b)
can be a point, a line, a plane,. . . , see Figure 4.4.

x

y

z

Sol(A,b)

N(A)

x

x

y

z

x

Sol(A,b)

N(A)

v x

y

z

x
Sol(A,b)

N(A)

v w

Figure 4.4: A solution space of dimension 0—a point (left); a solution space of dimension
1—a line (middle); a solution space of dimension 2—a plane (right)

Next, we want to understand in more detail in which cases there is a solution. As we
will see, this typically depends on whether r = m or not.

The case r = m corresponds to the situation where the matrix R0 resulting from Gauss-
Jordan elimination (Theorem 3.21) is in reduced row echelon form RREF, with no zero
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rows at the end. We can arrive at this case if A is a square matrix, or a short and wide ma-
trix (n > m), see Figure 2.1. In the latter case, we call the system Ax = b underdetermined.

If A is tall and skinny (n < m), the system is overdetermined and must have r < m. The
reason is that r, the number of independent columns, cannot exceed n, the total number
of columns.

Lemma 4.41. Let A be an m × n matrix of rank r = m. Then Ax = b has a solution for every
b ∈ Rm.

Proof. From Theorem 4.25, we know that dim(C(A)) = r = m, so C(A) is a subspace of
Rm of the same dimension m. Then we must have C(A) = Rm. This seems obvious,
but actually needs an argument. The argument is that every basis B of C(A) is a set of
m independent vectors in Rm and therefore also basis of Rm by Lemma 4.24 (i). Hence,
Span(B) = C(A) = Rm by Definition 4.16 of a basis.

It follows that every b ∈ Rm is in C(A), and this is the same as saying that Ax = b has
a solution.

In contrast, if r < m, the column space C(A) has dimension smaller than m. Then,
“almost all” vectors b ∈ Rm are not in C(A) and the system Ax = b is unsolvable. For
an illustration, consider Figure 2.3 (right) where the column space is a line in R2. If we
pick a “typical” b from R2 (whatever that precisely means), we expect b to land outside
of that line. This can properly be formalized, and under this formalization, a subspace of
Rm that has dimension smaller than m is a set of measure 0.

Hence, if we define a typical b to be one that is not in a given set of measure 0, then
typical systems Ax = b are unsolvable if r < m. For example, overdetermined systems
(n < m) are typically unsolvable. Underdetermined systems (n > m) are solvable (and
then have infinitely many solutions) if we have a “typical” A, one of full rank r = m. To
argue that short and wide matrices with r < m are untypical and form a set of measure 0,
we need determinants that will be introduced in the second part of the course. Similarly,
square systems (n = m) are (uniquely) solvable for typical A.

Affine subspaces. Generally, a shifted copy of a subspace in a vector space is called an
affine subspace. In the context of affine subspaces, a “normal” subspace is also sometimes
called linear subspace. There is a full theory of affine spaces which are essentially vector
spaces without a distinguished origin.4 The elements of an affine space are typically called
points, and they are simply locations in space whose positions are “absolute” and not
defined relative to a special origin 0.

4.3.6 Summary

Here we summarize the computations of the four fundamental subspaces of an m × n
matrix A, and of the solution space Sol(A,b). Gauss-Jordan elimination (Theorem 3.21)

4https://en.wikipedia.org/wiki/Affine_space, accessed September 7, 2024
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yields
MA = R0,

where R0 is in row echelon form REF(j1, j2, . . . , jr) for some 1 ≤ j1 < j2 < · · · < jr ≤ n,
and M is an invertible m × m matrix, recording all the row operations that happened
during elimination. M and R0 can be computed by performing Gauss-Jordan elimination
on the first n columns of the extended m × (n + m) matrix [A|I]. This transforms A into
MA = R0 and I into MI = M . From M and R0, bases of the four fundamental subspaces
can be read off easily, see Figure 4.5 for our running example.

LN(A) C(A) N(A) R(A)[
1
0

]
︸︷︷︸
v1(Q)

[
0
1

]
︸︷︷︸
v2(Q)12

3

 01
2


[
−2
0

]
︸ ︷︷ ︸
v1(I)

[
−3
2

]
︸ ︷︷ ︸
v2(I)

↑ ↑ ↑ ↑

[
1 −2 1

]
←

0 2 −1
0 −3 2
1 −2 1


︸ ︷︷ ︸

M

1 2 0 3
2 4 1 4
3 6 2 5


︸ ︷︷ ︸

A

=

1 2 0 3
0 0 1 −2
0 0 0 0


︸ ︷︷ ︸

R0 in REF(1,3)

→
[
1 2 0 3

]
→
[
0 0 1 −2

]
︸ ︷︷ ︸

R in RREF(1,3)

Figure 4.5: Computation of (bases of) the four fundamental subspaces of A, based on
Gauss-Jordan elimination (MA = R0)

Column space. Columns j1, j2, . . . , jr of A (the independent columns) form a basis of
the column space C(A); see Theorem 4.25.

Row space. The first r rows of R0 (the nonzero rows) define a matrix R in reduced
row echelon form RREF(j1, j2, . . . , jr). This matrix coincides with the matrix R in the CR
decomposition of A; see Theorem 3.24. Moreover, the rows of R are a basis of the row
space R(A); see Theorem 4.28.

Nullspace. For i = 1, 2, . . . , n − r, the i-th basis vector vi is obtained by setting the
subvector vi(Q) of the n − r free variables (the ones corresponding to the dependent
columns) to the i-th standard unit vector ei. The subvector vi(I) of basic variables is then
computed via vi(I) = −Qvi(Q) = −Qei where Q is the submatrix of R containing the
n− r dependent column; see Theorem 4.35. Note that −Qei is simply the negative of the
i-th column of Q.
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Left nullspace. The last m − r rows of M form a basis of the left nullspace LN(A); see
Theorem 4.38.

Table 4.3 summarizes the resulting dimensions (number of basis vectors) of the four
subspaces.

subspace
name symbol dimension

column space C(A) r
row space R(A) r
nullspace N(A) n− r

left nullspace LN(A) m− r

Table 4.3: Dimensions of the four fundamental subspaces of an m × n matrix A of
rank(A) = r.

Solution space of Ax = b. The solution space Sol(A,b) is a “shifted copy” of the
nullspace (Theorem 4.40) and therefore also of dimension n − r, if there is a solution.
For r = m, this is always the case (Lemma 4.41) but for r < m, it is typically not the case
(see the discussion after Lemma 4.41).
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taking out scalars, 22
tall and skinny, 39
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