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From the Farkas lemma to LP duality



The point of departure

This material can be found in any textbook about linear optimization, see for
example
A. Schrijver, Theory of linear and integer optimization, Wiley 1986.

Theorem (The Farkas Lemma)
Let A ∈ Rm×n, b ∈ Rm. Either there exists a vector x ∈ Rn such that Ax ≤ b or
there exists a vector y ∈ Rm such that y ≥ 0,yT A = 0 and yT b < 0.

Theorem (LP Duality)
(van Neumann 1947, Gale, Kuhn, Tucker 1951)
Given A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Assume that P = {x ∈ Rn | Ax ≤ b} ̸= /0
and D = {y ∈ Rm | yT A = cT , y ≥ 0} ̸= /0. Then

max{cT x | x ∈ P}=min{yT b | y ∈ D}
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LP duality

P = {x ∈ Rn | Ax ≤ b} ̸= /0 and D = {y ∈ Rm | yT A = cT , y ≥ 0} ̸= /0.

max{cT x | x ∈ P}=min{yT b | y ∈ D}

Proof.
We first observe that the two optimization problem have finite values.

Since D ̸= /0 and P ̸= /0, pick any x̂ ∈ P and ŷ ∈ D. This gives

cT x̂ = ŷT Ax̂ ≤ ŷT b, (1)

since ŷ ≥ 0 and Ax̂ ≤ b.
Let us assume the following fact.
Since the optimal value is δ =min{yT b | y ∈ D} is bounded, it is attained,
i.e., there exists an optimal solution y∗ ∈ D such that δ = bT y∗.
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Proof continued

From (1) we have cT x ≤ δ for all x ∈ P.

Hence, we need to show that{
x ∈ Rn | Ax ≤ b, −cT x ≤−δ

}
̸= /0.

Suppose that Ax ≤ b, −cT x ≤ δ has no solution. From the Farkas
lemma, there exist z ∈ Rm, z ≥ 0 and λ ≥ 0 such that

zT A−λcT = 0, zT b−λδ < 0. (2)

Suppose that λ = 0. Then we obtain zT A = 0, zT b < 0, z ≥ 0 which by
the Farkas lemma gives P = /0. This contradicts our assumptions.
Hence λ > 0. Then define the vector y = 1

λ
z. Now Equation (2) reads

yT A = cT , yT b < δ ,y ≥ 0.

This system has a solution. But this contradicts that δ =min{yT b | y ∈ D}.

Robert Weismantel November 29, 2024 4 / 4



Proof continued

From (1) we have cT x ≤ δ for all x ∈ P.
Hence, we need to show that{

x ∈ Rn | Ax ≤ b, −cT x ≤−δ

}
̸= /0.

Suppose that Ax ≤ b, −cT x ≤ δ has no solution. From the Farkas
lemma, there exist z ∈ Rm, z ≥ 0 and λ ≥ 0 such that

zT A−λcT = 0, zT b−λδ < 0. (2)

Suppose that λ = 0. Then we obtain zT A = 0, zT b < 0, z ≥ 0 which by
the Farkas lemma gives P = /0. This contradicts our assumptions.
Hence λ > 0. Then define the vector y = 1

λ
z. Now Equation (2) reads

yT A = cT , yT b < δ ,y ≥ 0.

This system has a solution. But this contradicts that δ =min{yT b | y ∈ D}.

Robert Weismantel November 29, 2024 4 / 4



Proof continued

From (1) we have cT x ≤ δ for all x ∈ P.
Hence, we need to show that{

x ∈ Rn | Ax ≤ b, −cT x ≤−δ

}
̸= /0.

Suppose that Ax ≤ b, −cT x ≤ δ has no solution. From the Farkas
lemma, there exist z ∈ Rm, z ≥ 0 and λ ≥ 0 such that

zT A−λcT = 0, zT b−λδ < 0. (2)

Suppose that λ = 0. Then we obtain zT A = 0, zT b < 0, z ≥ 0 which by
the Farkas lemma gives P = /0. This contradicts our assumptions.
Hence λ > 0. Then define the vector y = 1

λ
z. Now Equation (2) reads

yT A = cT , yT b < δ ,y ≥ 0.

This system has a solution. But this contradicts that δ =min{yT b | y ∈ D}.

Robert Weismantel November 29, 2024 4 / 4



Proof continued

From (1) we have cT x ≤ δ for all x ∈ P.
Hence, we need to show that{

x ∈ Rn | Ax ≤ b, −cT x ≤−δ

}
̸= /0.

Suppose that Ax ≤ b, −cT x ≤ δ has no solution. From the Farkas
lemma, there exist z ∈ Rm, z ≥ 0 and λ ≥ 0 such that

zT A−λcT = 0, zT b−λδ < 0. (2)

Suppose that λ = 0. Then we obtain zT A = 0, zT b < 0, z ≥ 0 which by
the Farkas lemma gives P = /0. This contradicts our assumptions.

Hence λ > 0. Then define the vector y = 1
λ

z. Now Equation (2) reads

yT A = cT , yT b < δ ,y ≥ 0.

This system has a solution. But this contradicts that δ =min{yT b | y ∈ D}.

Robert Weismantel November 29, 2024 4 / 4



Proof continued

From (1) we have cT x ≤ δ for all x ∈ P.
Hence, we need to show that{

x ∈ Rn | Ax ≤ b, −cT x ≤−δ

}
̸= /0.

Suppose that Ax ≤ b, −cT x ≤ δ has no solution. From the Farkas
lemma, there exist z ∈ Rm, z ≥ 0 and λ ≥ 0 such that

zT A−λcT = 0, zT b−λδ < 0. (2)

Suppose that λ = 0. Then we obtain zT A = 0, zT b < 0, z ≥ 0 which by
the Farkas lemma gives P = /0. This contradicts our assumptions.
Hence λ > 0. Then define the vector y = 1

λ
z. Now Equation (2) reads

yT A = cT , yT b < δ ,y ≥ 0.

This system has a solution. But this contradicts that δ =min{yT b | y ∈ D}.

Robert Weismantel November 29, 2024 4 / 4


