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Linear Regression, reloaded

With least squares and linear algebra, we can find a line that minimizes the sum of
quadratic errors,

min
α0,α1

m∑
k=1

(bk − (α0 + α1tk))
2

Outliers (points far up or down) have too much influence: large errors get “inflated”
by squaring them. Why not minimize the sum of absolute errors?

min
α0,α1

m∑
k=1

|bk − (α0 + α1tk)|
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Linear Regression with absolute errors

A line that minimizes the sum of absolute errors

min
α0,α1

m∑
k=1

|bk − (α0 + α1tk)|

can be found efficiently. . .

▶ . . . but this is much more complicated (and much slower) than least squares

▶ . . . and uses a technique that is known to be efficient only since 1979!

▶ In contrast, least squares is well-understood since the 18th century.

The 20th century technique is called Linear Programming.

Observation: the sum of absolute errors can be minimized by linear programming
[MG07, Section 2.4 + Section 6.1].
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Linear programming: from linear equations. . . to linear inequalities
Problem: Solve Ax = b! Algorithm: Gauss-Jordan elimination

Problem: Solve Ax ≤ b!

Example:
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

A =


−1 0
0 −1

−1 1
1 6
4 −1

 , b =


0
0
1

15
10


−1 x1 +0 x2 ≤ 0
0 x1 −1 x2 ≤ 0

−1 x1 +1 x2 ≤ 1
1 x1 +6 x2 ≤ 15
4 x1 −1 x2 ≤ 10

This is called (the decision version) of Linear Programming and has many important
applications [MG07].

Optimization version (used for regression with absolute errors): find solution of Ax ≤ b
that maximizes a linear function c⊤x! Reduces to decision version [MG07, Section 6.1].

Algorithm: ?
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The solution space (subset of R2)

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

Intersection of five
halfplanes

Halfplane: everything
on one side of a line,
including the line

.
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The solution space (subset of R3)

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

0 ≤ x3 ≤ 1

Unit cube
Intersection of six halfspaces
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The solution space (subset of R3)

0 ≤ x1 ≤ 1

1
3x1 ≤ x2 ≤ 1− 1

3x1

1
3x2 ≤ x3 ≤ 1− 1

3x2

Klee-Minty Cube
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The solution space (subset of Rn)

A an m × n matrix, b ∈ Rm

Solutions of Ax ≤ b: intersection of m halfspaces in Rn, a convex polyhedron

R2

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

Convex polygon

R3

Convex polyhedron

Rn

Beast
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Taming the beast
Title Page, New York Times, November 7, 1979 ( bottom of the page)
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Taming the beast, in theory and in practice

▶ Leonid Khachiyan, 1979: Linear Programming can in theory be solved efficiently.

▶ However, Khachiyan’s algorithm (the ellipsoid method) is useless in practice.

▶ George Dantzig, 1940’s: Linear Programming can in practice be solved efficiently.

▶ However, Dantzig’s algorithm (the simplex method) is useless in theory.

▶ What this means: It is not known whether there is a variant of the simplex
method that is provably efficient.

▶ This is ongoing research. . .
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Linear inequalities, geometrically

Problem, algebraically: Solve Ax ≤ b!

Problem, geometrically: Find a point in a convex polyhedron, or conclude that it is
empty!

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≥ 10

x1 + 6x2 ≤ 15

x 2
−
x 1
≥
1

point in convex polyhedron = solution convex polyhedron empty, no solution
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Finding a point in a convex polyhedron. . .
. . . is “the same” as finding a corner.1

If we have a corner, we have a point, and if we have a point, we can easily find a
corner (walk until we hit a wall, walk inside the wall until we hit another wall,. . . )

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

1For this, we need to assume that the convex polyhedron is bounded, but this is no problem.
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Solving Ax ≤ b
Consider the inequalities

Ax+ xn+1 ·


1
1
...
1

 ≤ b, xn+1 ≤ 0.

x
1
≥

0

x2 ≥ 0

4x1 − x2 ≤ 10

x1 + 6x2 ≤ 15
x 2
−
x 1
≤
1

▶ The corresponding convex polyhedron in Rn+1 is nonempty, and a point in it can
be found easily (set x = 0 and make xn+1 small enough).

▶ From this point, find a corner, as described before.

▶ From this corner, “climb up” along edges to the highest corner (= highest
point, the one with largest xn+1-value).

▶ If the highest corner has xn+1 = 0, we have solved Ax ≤ b, otherwise, Ax ≤ b has
no solution.

This is George Dantzig’s simplex method from the 1940’s [Dan63].
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Depending on the climbing rule, the simplex method. . .

. . . can be very fast. . . . . . or very slow.

n-dimensional Klee-Minty cube: a natural climbing rule visits all 2n corners [KM72].
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Runtime of the simplex method

▶ Fast in practice

▶ But: For every climbing rule that people have developed, there are (artificially
constructed) beasts on which climbing takes very long when this rule is used.

Open problem: Is there a climbing rule which climbs every beast quickly?

A positive answer would solve Smale’s 9th problem for the 21st century:

https://en.wikipedia.org/wiki/Smale%27s_problems

▶ There are randomized climbing rules (using coin flips) which are (in expectation)
faster than the known deterministic ones (no coin flips).

▶ One concrete result here: There is a rule that climbs every n-dimensional cube in
at most e2

√
n steps in expectation (much better than the worst case 2n) [Gär02].
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More on linear programming

▶ VL Algorithms, Probability, and
Computing (Kernfach, Vertiefung
Theoretische Informatik)
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