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Lecture 13: Bases and dimension



The target
Understand generators of a vector space: Key concept is this of a basis: this
is a subset of linearly independent elements in the vector space whose span
is the entire vector space.

Definition
Let V be a vector space. Let G ⊆ V be a (possibly infinite) subset of vectors.
A linear combination of G is a sum of the form

∑
v∈F

λv v ,

where F ⊆ G is a finite subset of G and λv ∈ R for all v ∈ F .

Lemma
Let V be a vector space. Let G ⊆ V. Every linear combination of G is again an
element in V .
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Linear combinations

Proof of the lemma
”Every linear combination of G ⊆ V is again an element in V .”

Let F = {v1, . . . ,vn} ⊆ G be a finite subset of G. Consider the linear
combination

n

∑
j=1

λjvj .

By definition of a vector space, wj := λjvj ∈ V for all j = 1, . . . ,n.
Accordingly, w1 +w2 ∈ V .
Use an inductive argument:
If w := w1 + . . .+wj−1 ∈ V then,

w1 +w2 + · · ·+wj−1 +wj = w +wj ∈ V .
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The concept of a basis

Why not infinite linear combinations?
The previous lemma may fail. Let V be the vector space of polynomials with
real coefficients in one variable x . Then 1,x ,x2,x3, . . . ∈ V , but

∞

∑
i=0

x i =
1

1−x
̸∈ V .

Definition
Let V be a vector space. Let G ⊆ V be a subset of elements in V .

Span(G) = { ∑
v∈F

λv v | λv ∈ R for all v ∈ F , F ⊆ G finite}.

G is linearly independent if no vector v ∈ G is a linear combination of
G \{v}.
G is linearly dependent if there exists a vector w ∈ G that is a linear
combination of G \{w}.
B ⊆ V is a basis of V if B is linearly independent and Span(B) = V .
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Two observations

Let V be a vect. sp. G ⊆ V is linearly independent if and only if
for all F ⊆ G, F finite, ∑v∈F λvv = 0 implies λv = 0 for all v ∈ F .

Suppose F is finite and ∑v∈F λv v = 0 where λw ̸= 0 for w ∈ F .
Then λw w =−∑v∈F\{w} λv v ⇐⇒ w = −1

λw
∑v∈F\{w} λv v and hence,

w ∈ G is a linear combination of G \{w}.
Conversely, if w = ∑v∈F λv v where F ⊆ G finite and w ∈ G, then we obtain
0 = ∑v∈F λv v −1 ·w .

Every set B of m linearly ind. vectors in Rm is a basis of Rm.
Let B = {v1,v2, . . . ,vm}. We need to show that Span(B) = Rm!
Define the matrix A ∈ Rm×m with columns v1,v2, . . . ,vm.
From Theorem 3.11 it follows that for every v ∈ Rm, Ax = v has a unique
solution x ∈ Rm and hence,

v =
m

∑
j=1

xjvj
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Steinitz exchange lemma

Lemma.
Let V be a vector space, F ⊆ V finite and linearly independent, G ⊆ V finite
with Span(G) = V . Then

(i) |F | ≤ |G|.
(ii) There exists a subset E ⊆ G of size |G|− |F | such that Span(F ∪E) = V .

Proof by induction on f = |F |.
if f = 0, then F = /0. Hence, (i) is clear and for (ii), take E = G.
Let f > 0. Suppose the statement is correct for all numbers smaller than f .
Choose u ∈ F , F ′ = F \{u}, g = |G|. From the induction hypothesis
applied to F ′ we have

(i) g ≥ f −1.
(ii) There exists a subset E ′ ⊆ G of size g− (f −1) with Span(F ′∪E ′) = V .
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Proof of the Steinitz exchange lemma continued

u ∈ Span(F ′∪E ′). Since F is lin. ind., u ̸∈ Span(F ′). This gives

u = ∑
v∈F ′∪E ′

λv v , where λw ̸= 0 for some w ∈ E ′.

Hence |E ′|= g− (f −1)≥ 1 ⇐⇒ g ≥ f and we showed statement (i).

To show (ii), let E := E ′ \{w}.
We have F ′ = F \{u} and span(F ′∪E ′) = V .
u is a linear combination of F ′∪E ′ = F ′∪E ∪{w},

u = ∑
v∈F ′∪E

λv v +λw w ⇐⇒ w =
1

λw
(u− ∑

v∈F ′∪E
λv v).

Hence w is a linear combination of {u}∪F ′∪E = F ∪E .
This gives Span(F ∪E) = Span({u}∪F ′∪E).

Span({u}∪F ′∪E) = Span({u}∪{w}∪F ′∪E) = Span({u}∪F ′∪E ′) = V .
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Finitely generated vector spaces I

Definition
A vector space V is called finitely generated if there exists a finite subset
G ⊆ V with Span(G) = V .

Rm is finitely generated, whereas R[x ] is not

Theorem 4.22
Let V be a finitely generated vector space, let G ⊆ V be a finite subset of V
with Span(G) = V . Then V has a basis B ⊆ G.

Proof.
If G is linearly independent, then B = G is a basis by definition.
Otherwise, there exists v ∈ G that is a linear combination of the other
vectors. We have that Span(G \{v}) = Span(G) = V .
Replace G with G \{v} and iterate.
Since V is finitely generated this process finally stops with B = G.
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Finitely generated vector spaces II

Theorem 4.20
Let V be a finitely generated vector space. Let B,B′ ⊆ V be two finite bases of
V . Then, |B|= |B′|.

Proof.
Bases B and B′ are linearly independent and Span(B) = Span(B′) = V .
Apply Steinitz exchange lemma (i):
F = B,G = B′ ⇒ |B| ≤ |B′|.
F = B′,G = B ⇒ |B′| ≤ |B|.

Theorem 4.20 and Theorem 4.22
Let V be a finitely generated vector space. V has a finite basis B ⊆ V and
whenever B,B′ ⊆ V are two finite bases of V , then |B|= |B′|.
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Dimension of a vector space

Definition
Let V be a finitely generated vector space. Then dim(V ), the dimension of V ,
is the size of any basis B of V . (Note that dim(Rm) = m)

Lemma 4.24
Let V be a vector space of dimension d .

(i) Let F ⊆ V be a set of d linearly independent vectors. F is a basis of V .
(ii) Let G ⊆ V be a set of d vectors with Span(G) = V . G is a basis of V .

Proof.
Let G be a basis of V . Steinitz exchange Lemma applies with F and G.
|F |= |G|= d ⇒ E = /0. Span(F ) = Span(F ∪E) = V ⇒ F is a basis.
From Thm 4.22, there exists a basis B ⊆ G of size d , i.e., |B|= |G|.

⇒ B = G ⇒ G is a basis.
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