

Robert Weismantel

Lecture 13: Bases and dimension

The target

Understand generators of a vector space: Key concept is this of a basis: this is a subset of linearly independent elements in the vector space whose span is the entire vector space.

Definition

Let *V* be a vector space. Let $G \subseteq V$ be a (possibly infinite) subset of vectors. A linear combination of *G* is a sum of the form

$$\sum_{v\in F}\lambda_v v_s$$

where $F \subseteq G$ is a finite subset of G and $\lambda_{v} \in \mathbb{R}$ for all $v \in F$.

Lemma

Let V be a vector space. Let $G \subseteq V$. Every linear combination of G is again an element in V.

Proof of the lemma

"Every linear combination of $G \subseteq V$ is again an element in *V*."

Let F = {v₁,...,v_n} ⊆ G be a finite subset of G. Consider the linear combination

$$\sum_{j=1}^n \lambda_j v_j.$$

- By definition of a vector space, $w_j := \lambda_j v_j \in V$ for all j = 1, ..., n.
- Accordingly, $w_1 + w_2 \in V$.
- Use an inductive argument:
- If $w := w_1 + \ldots + w_{j-1} \in V$ then,

$$w_1 + w_2 + \cdots + w_{j-1} + w_j = w + w_j \in V.$$

Why not infinite linear combinations?

The previous lemma may fail. Let *V* be the vector space of polynomials with real coefficients in one variable *x*. Then $1, x, x^2, x^3, \ldots \in V$, but

$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \notin V.$$

Definition

Let V be a vector space. Let $G \subseteq V$ be a subset of elements in V.

۲

$$Span(G) = \{\sum_{v \in F} \lambda_v v \mid \lambda_v \in \mathbb{R} \text{ for all } v \in F, F \subseteq G \text{ finite} \}.$$

- *G* is linearly independent if no vector $v \in G$ is a linear combination of $G \setminus \{v\}$.
- G is linearly dependent if there exists a vector w ∈ G that is a linear combination of G \ {w}.
- $B \subseteq V$ is a basis of V if B is linearly independent and Span(B) = V.

Two observations

Let *V* be a vect. sp. $G \subseteq V$ is linearly independent if and only if for all $F \subseteq G$, *F* finite, $\sum_{v \in F} \lambda_v v = 0$ implies $\lambda_v = 0$ for all $v \in F$.

- Suppose *F* is finite and $\sum_{v \in F} \lambda_v v = 0$ where $\lambda_w \neq 0$ for $w \in F$.
- Then $\lambda_w w = -\sum_{v \in F \setminus \{w\}} \lambda_v v \iff w = \frac{-1}{\lambda_w} \sum_{v \in F \setminus \{w\}} \lambda_v v$ and hence,
- $w \in G$ is a linear combination of $G \setminus \{w\}$.
- Conversely, if $w = \sum_{v \in F} \lambda_v v$ where $F \subseteq G$ finite and $w \in G$, then we obtain

•
$$0 = \sum_{v \in F} \lambda_v v - 1 \cdot w.$$

Every set *B* of *m* linearly ind. vectors in \mathbb{R}^m is a basis of \mathbb{R}^m .

- Let $B = \{v_1, v_2, \dots, v_m\}$. We need to show that $Span(B) = \mathbb{R}^m!$
- Define the matrix $A \in \mathbb{R}^{m \times m}$ with columns v_1, v_2, \ldots, v_m .
- From Theorem 3.11 it follows that for every $v \in \mathbb{R}^m$, Ax = v has a unique solution $x \in \mathbb{R}^m$ and hence,

$$v = \sum_{j=1}^m x_j v_j$$

Lemma.

Let V be a vector space, $F \subseteq V$ finite and linearly independent, $G \subseteq V$ finite with Span(G) = V. Then

(i) $|F| \le |G|$.

(ii) There exists a subset $E \subseteq G$ of size |G| - |F| such that $Span(F \cup E) = V$.

Proof by induction on f = |F|.

- if f = 0, then $F = \emptyset$. Hence, (i) is clear and for (ii), take E = G.
- Let f > 0. Suppose the statement is correct for all numbers smaller than f.
- Choose $u \in F$, $F' = F \setminus \{u\}$, g = |G|. From the induction hypothesis applied to F' we have
 - (i) $g \ge f 1$.
 - (ii) There exists a subset $E' \subseteq G$ of size g (f 1) with $Span(F' \cup E') = V$.

Proof of the Steinitz exchange lemma continued

• $u \in Span(F' \cup E')$. Since F is lin. ind., $u \notin Span(F')$. This gives

$$u = \sum_{v \in F' \cup E'} \lambda_v v$$
, where $\lambda_w \neq 0$ for some $w \in E'$.

• Hence $|E'| = g - (f - 1) \ge 1 \iff g \ge f$ and we showed statement (i).

To show (ii), let $E := E' \setminus \{w\}$.

- We have $F' = F \setminus \{u\}$ and $span(F' \cup E') = V$.
- *u* is a linear combination of $F' \cup E' = F' \cup E \cup \{w\}$,

$$u = \sum_{v \in F' \cup E} \lambda_v v + \lambda_w w \iff w = \frac{1}{\lambda_w} (u - \sum_{v \in F' \cup E} \lambda_v v).$$

- Hence *w* is a linear combination of $\{u\} \cup F' \cup E = F \cup E$.
- This gives $Span(F \cup E) = Span(\{u\} \cup F' \cup E)$.

 $Span(\{u\} \cup F' \cup E) = Span(\{u\} \cup \{w\} \cup F' \cup E) = Span(\{u\} \cup F' \cup E') = V.$

Finitely generated vector spaces I

Definition

A vector space V is called finitely generated if there exists a finite subset $G \subseteq V$ with Span(G) = V.

\mathbb{R}^m is finitely generated, whereas $\mathbb{R}[x]$ is not

Theorem 4.22

Let *V* be a finitely generated vector space, let $G \subseteq V$ be a finite subset of *V* with Span(G) = V. Then *V* has a basis $B \subseteq G$.

Proof.

- If G is linearly independent, then B = G is a basis by definition.
- Otherwise, there exists v ∈ G that is a linear combination of the other vectors. We have that Span(G \ {v}) = Span(G) = V.
- Replace G with $G \setminus \{v\}$ and iterate.
- Since V is finitely generated this process finally stops with B = G.

Theorem 4.20

Let *V* be a finitely generated vector space. Let $B, B' \subseteq V$ be two finite bases of *V*. Then, |B| = |B'|.

Proof.

- Bases *B* and *B'* are linearly independent and Span(B) = Span(B') = V.
- Apply Steinitz exchange lemma (i):
- $F = B, G = B' \Rightarrow |B| \le |B'|.$
- $F = B', G = B \Rightarrow |B'| \le |B|.$

Theorem 4.20 and Theorem 4.22

Let *V* be a finitely generated vector space. *V* has a finite basis $B \subseteq V$ and whenever $B, B' \subseteq V$ are two finite bases of *V*, then |B| = |B'|.

Definition

Let *V* be a finitely generated vector space. Then $\dim(V)$, the dimension of *V*, is the size of any basis *B* of *V*. (Note that $\dim(\mathbb{R}^m) = m$)

Lemma 4.24

Let V be a vector space of dimension d.

(i) Let $F \subseteq V$ be a set of *d* linearly independent vectors. *F* is a basis of *V*.

(ii) Let $G \subseteq V$ be a set of *d* vectors with Span(G) = V. *G* is a basis of *V*.

Proof.

• Let G be a basis of V. Steinitz exchange Lemma applies with F and G.

- $|F| = |G| = d \Rightarrow E = \emptyset$. Span $(F) = Span(F \cup E) = V \Rightarrow F$ is a basis.
- From Thm 4.22, there exists a basis $B \subseteq G$ of size d, i.e., |B| = |G|.

$$\Rightarrow \quad B = G \quad \Rightarrow \quad G \text{ is a basis.}$$