

Robert Weismantel

Lecture 21: Projections of sets and the Farkas Lemma

The strategy

The guiding question

Suppose we are given a set of linear inequalities in \mathbb{R}^n . How can we certify that the set is nonempty?

Definition (Projection of a set of inequalities)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ and $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$. *P* is called a polyhedron. Let $S = \{1, ..., s\}$. The **projection of P** on the subspace \mathbb{R}^s associated with the variables in the subset *S* is

 $\operatorname{proj}_{\mathcal{S}}(\mathcal{P}) := \{ x \in \mathbb{R}^s \mid \exists y \in \mathbb{R}^{n-s} \text{ such that } (x^T, y^T)^T \in \mathcal{P} \}.$

Remark / Question

- $P \neq \emptyset$ if and only if $\operatorname{proj}_{\mathcal{S}}(P) \neq \emptyset$.
- Does proj_S(P) have a description in form of a finite system of linear inequalities?
- If so, then the question whether P ≠ Ø is reduced to a question of the same form in smaller dimension.

Robert Weismantel

The one-dimensional case

Intuition

Let $a \in \mathbb{Q}^m$, $a_i \neq 0$ for all *i* and $b \in \mathbb{Q}^m$. We consider $P = \{x \in \mathbb{R} \mid ax \le b\} \subseteq \mathbb{R}$. We first notice that we can rewrite the constraints in *P* as follows. Set

$$u := \min\{\frac{b_i}{a_i} \mid a_i > 0\}, \quad I := \max\{\frac{b_i}{a_i} \mid a_i < 0\}.$$

$$P = \{x \in \mathbb{R} \mid x \leq \frac{b_i}{a_i} \text{ if } a_i > 0, \ x \geq \frac{b_i}{a_i} \text{ if } a_i < 0\} = \{x \in \mathbb{R} \mid x \leq u, \ x \geq l\}.$$

Proposition

$$P \neq \emptyset \iff I \leq u \iff 0 \leq u - I \iff 0 \leq y^T b$$
 for all $y \geq 0$ such that $y^T a = 0$.

We want to derive such a result in general dimensions!

Let $A \in \mathbb{Q}^{m \times n}$ with entries a_{ij} , let $b \in \mathbb{Q}^m$ and $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$. Let $\bar{x} = (x_1, \dots, x_{n-1})$ and $\bar{A} = [A_{\cdot 1} \dots A_{\cdot n-1}]$.

Robert Weismantel

Elimination of one variable

Algorithm

(1) Partition the indices $M = \{1, ..., m\}$ of the rows of A into three subsets

$$M_0 = \{i \in M \mid a_{i,n} = 0\}, \quad M_+ = \{i \in M \mid a_{i,n} > 0\} \text{ and } M_- = \{i \in M \mid a_{i,n} < 0\}.$$

(2) • For every row with index $i \in M_+$ multiply the corresponding constraint by $\frac{1}{a_i}$.

$$x_n \leq d_i + f_i^T ar{x}$$
 for $i \in M_+$ where $d_i = rac{b_i}{a_{in}}, \ f_{ij} = -rac{a_{ij}}{a_{in}}$

Every row with index k ∈ M₀ can be rewritten as

$$0 \le d_k + f_k^T \bar{x}$$
 for $k \in M_0$ where $d_k = b_k$, $f_{kj} = -a_{kj}$.

• For every row with index $i \in M_{-}$ multiply the corresponding constraint by $\frac{1}{a_{in}}$.

$$\mathbf{x}_n \geq \mathbf{d}_i + \mathbf{f}_i^T ar{\mathbf{x}}$$
 for $i \in M_-$ where $\mathbf{d}_i = rac{\mathbf{b}_i}{\mathbf{a}_{in}}, \ \mathbf{f}_{ij} = -rac{\mathbf{a}_{ij}}{\mathbf{a}_{in}}$

(3) Return Q.

Elimination of one variable continued

$$\begin{aligned} Q &= & \left\{ \bar{x} \in \mathbb{R}^{n-1} \mid & 0 \leq & d_k + f_k^T \bar{x} \text{ for all } k \in M_0, \\ & d_l + f_l^T \bar{x} & \leq & d_l + f_i^T \bar{x} \text{ for all } l \in M_-, \ i \in M_+ \right\}. \end{aligned}$$

Theorem 3. Let $S = \{1, ..., n-1\}$

The set *Q* returned in Step 3 is a polyhedron. Moreover, $Q = \text{proj}_{S}(P)$.

Proof of the first statement

• *Q* is a polyhedron, because we find $F \in \mathbb{Q}^{k \times n-1}$ and $f \in \mathbb{Q}^k$ such that

$$Q = \Big\{ \bar{x} \in \mathbb{R}^{n-1} \mid F\bar{x} \leq f \Big\}.$$

- Let $k = |M_0| + |M_-||M_+|$. The rows of *F* contain all rows of *A* with index $i \in M_0$. The corresponding right hand side vector satisfies that $f_i = b_i$.
- The other rows of *F* are of the form $(f_l f_i)^T$ for indices $l \in M_-$ and $i \in M_+$. The corresponding right hand side entry of *f* is then $d_i d_l$.

Proof continued

$\operatorname{proj}_{\mathcal{S}}(P) \subseteq Q.$

Take any $\bar{x} \in \operatorname{proj}_{S}(P)$. There exists $z \in \mathbb{R}$ such that $(\bar{x}, z) \in P$. Hence z satisfies the constraints in Step 2. In particular,

$$d_l + f_l^T \bar{x} \leq z \leq d_i + f_i^T \bar{x}$$
 for all $l \in M_-$, $i \in M_+$.

This shows that $\bar{x} \in Q$.

$Q \subseteq \operatorname{proj}_{\mathcal{S}}(P)$

Take any $\bar{x} \in Q$. It follows that

$$\begin{array}{lll} 0 & \leq & d_k + f_k^T \bar{x} \text{ for all } k \in M_0, \\ d_l + f_l^T \bar{x} & \leq & d_l + f_l^T \bar{x} \text{ for all } l \in M_-, \ i \in M_+ \Big\}. \end{array}$$

Let $L := \max\{d_l + f_l^T \bar{x} \mid l \in M_-\}$ and $U := \min\{d_i + f_i^T \bar{x} \mid i \in M_+\}$. Take any value $z \in [L, U]$. Then $(\bar{x}, z) \in P$. Hence, $\bar{x} \in \operatorname{proj}_{\mathcal{S}}(P)$.

Use these projections repeatedly

Lemma

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ and $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$. For indices $1 \le k < j < n$, consider

$$S_1 = \{1, \dots, n-k\}$$
 and $S_2 = \{1, \dots, n-j\}$.

Then $\operatorname{proj}_{S_2}(P) = \operatorname{proj}_{S_2}(\operatorname{proj}_{S_1}(P)).$

Proof for k = 1 and j = 2

 Let z ∈ proj_{S2}(P). There exist (x_{n-1}, x_n) ∈ ℝ² such that (z, x_{n-1}, x_n) ∈ P. In particular, there exists a value x_n such that

$$(z, x_{n-1}, x_n) \in P \quad \Rightarrow \quad (z, x_{n-1}) \in \operatorname{proj}_{S_1}(P) \quad \Rightarrow \quad z \in \operatorname{proj}_{S_2}(\operatorname{proj}_{S_1}(P)).$$

• Conversely, take $z \in \operatorname{proj}_{S_2}(\operatorname{proj}_{S_1}(P))$, i.e., there exists $x_{n-1} \in \mathbb{R}$ such that

$$(z, x_{n-1}) \in \operatorname{proj}_{S_1}(P).$$

Hence there exists $x_n \in \mathbb{R}$ such that $(z, x_{n-1}, x_n) \in P$, i.e., $z \in \operatorname{proj}_{S_2}(P)$.

The elimination process algebraically

Definition 5

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ and $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$. We define $A^{(j)}$ to be the submatrix of A with column vectors $A_{\cdot,k}$ for k = 1, ..., j. Let $P^{(0)} = P$ and $C^{(0)} = \mathbb{R}^m_+$.

Define for $i \in \{1, \ldots, n\}$

$$C^{(i)} = \left\{ y \in \mathbb{R}^m_+ \mid y^T A_{\cdot k} = 0 \text{ for all } k = n - i + 1, \dots, n \right\}.$$
$$P^{(i)} = \left\{ \bar{x} \in \mathbb{R}^{n-i} \mid y^T A^{(n-i)} \bar{x} \le y^T b \text{ for all } y \in C^{(i)} \right\}.$$

Theorem

- $\operatorname{proj}_{S_{n-i}}(P) = P^{(i)}$.
- The proof shows that P⁽ⁱ⁾ is a polyhedron
- Polyhedra are closed under projections.

First part of the proof

$\operatorname{proj}_{\mathcal{S}_{n-i}}(\mathcal{P}) \subseteq \mathcal{P}^{(i)}$

• Let $\bar{x} \in \operatorname{proj}_{S_{n-i}}(P)$. By definition, there exists $z \in \mathbb{R}^i$ such that

$$(\bar{x},z)\in P.$$

• Hence, (\bar{x}, z) satisfies the following inequalities

$$\sum_{k=1}^{n-i} A_{\cdot k} \bar{x}_k + \sum_{k=n-i+1}^n A_{\cdot k} z_k \leq b.$$

• This implies that for all $y \in C^{(i)}$ we obtain that

$$\begin{split} \sum_{k=1}^{n-i} y^T A_{\cdot k} \bar{x}_k + \sum_{k=n-i+1}^n y^T A_{\cdot k} z_k &= \sum_{k=1}^{n-i} y^T A_{\cdot k} \bar{x}_k \\ &= y^T A^{(n-i)} \bar{x} \leq y^T b, \end{split}$$

Second part of the proof

$P^{(i)} \subseteq \operatorname{proj}_{S_{n-i}}(P).$

• We apply an inductive argument. The base case is *i* = 1. Recall

$$\begin{aligned} &\mathcal{C}^{(1)} &= & \Big\{ y \in \mathbb{R}^m_+ \mid y^T \mathcal{A}_{.n} = 0 \Big\}, \\ &\mathcal{P}^{(1)} &= & \Big\{ \bar{x} \in \mathbb{R}^{n-1} \mid y^T \mathcal{A}^{(n-1)} \bar{x} \leq y^T b \text{ for all } y \in \mathcal{C}^{(1)} \Big\}. \end{aligned}$$

• $P^{(1)} \subseteq \operatorname{proj}_{S_{n-1}}(P)$ follows by observing:

- if one takes y as the unit vector e_k for $k \in M_0$. Then $e_k \in C^{(1)}$.
- pick two indices $I \in M_{-}$ and $i \in M_{+}$. Then

$$y := -\frac{1}{a_{ln}}e_l + \frac{1}{a_{in}}e_i \in C^{(1)}.$$

- The corresponding inequalities obtained from choosing y as described above are part of the description of Q = proj_{S_{n-1}}(P) in Theorem 3.
- The inductive step can be shown similarly.

Theorem (The Farkas Lemma)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$. Either there exists a vector $x \in \mathbb{R}^n$ such that $Ax \leq b$ or there exists a vector $y \in \mathbb{R}^m$ such that $y \geq 0$, $y^T A = 0$ and $y^T b < 0$.

Proof.

We refer to the notation introduced in Definition 5.

$$C^{(n)} = \{ y \in \mathbb{R}^{m}_{+} \mid y^{T} A_{j} = 0 \text{ for all } j = 1, \dots, n \} = \{ y \ge 0 \mid y^{T} A = 0 \}$$

 $P^{(n)} = \{ 0 \le y^T b \text{ for all } y \in C^{(n)} \}.$ We conclude that

$$P \neq \emptyset \iff P^{(1)} \neq \emptyset \iff \ldots \iff P^{(n)} \neq \emptyset \iff y^T b \ge 0 \forall y \ge 0 \text{ with } y^T A = 0.$$

Either $P \neq \emptyset$ or $P = \emptyset$. Equivalently: either there exists

 $x \in \mathbb{R}^n$ such that $Ax \le b$ or $y \in \mathbb{R}^m$ such that $y \ge 0$, $y^T A = 0$ and $y^T b < 0$.