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Lecture 21: Projections of sets and the Farkas
Lemma



The strategy

The guiding question
Suppose we are given a set of linear inequalities in Rn. How can we certify
that the set is nonempty?

Definition (Projection of a set of inequalities)
Let A ∈Qm×n, b ∈Qm and P = {x ∈ Rn | Ax ≤ b}. P is called a polyhedron.
Let S = {1, . . . ,s}. The projection of P on the subspace Rs associated with
the variables in the subset S is

projS(P) := {x ∈ Rs | ∃y ∈ Rn−s such that (xT ,yT )T ∈ P}.

Remark / Question
P ̸= /0 if and only if projS(P) ̸= /0.
Does projS(P) have a description in form of a finite system of linear
inequalities?
If so, then the question whether P ̸= /0 is reduced to a question of the
same form in smaller dimension.
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The one-dimensional case

Intuition
Let a ∈Qm, ai ̸= 0 for all i and b ∈Qm. We consider P = {x ∈ R | ax ≤ b} ⊆ R.
We first notice that we can rewrite the constrains in P as follows. Set

u := min{bi

ai
| ai > 0}, l := max{bi

ai
| ai < 0}.

P = {x ∈ R | x ≤ bi

ai
if ai > 0, x ≥ bi

ai
if ai < 0}= {x ∈ R | x ≤ u, x ≥ l}.

Proposition
P ̸= /0 ⇐⇒ l ≤ u ⇐⇒ 0 ≤ u− l ⇐⇒ 0 ≤ yT b for all y ≥ 0 such that yT a = 0.

We want to derive such a result in general dimensions!
Let A ∈Qm×n with entries aij , let b ∈Qm and P = {x ∈ Rn | Ax ≤ b}.
Let x̄ = (x1, . . . ,xn−1) and Ā = [A·1 . . .A·n−1].
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Elimination of one variable

Algorithm
(1) Partition the indices M = {1, . . . ,m} of the rows of A into three subsets

M0 = {i ∈M | ai ,n = 0}, M+ = {i ∈M | ai ,n > 0} and M− = {i ∈M | ai ,n < 0}.

(2) For every row with index i ∈ M+ multiply the corresponding constraint by 1
ain

.

xn ≤ di + f T
i x̄ for i ∈ M+ where di =

bi
ain

, fij =−
aij

ain
.

Every row with index k ∈ M0 can be rewritten as

0 ≤ dk + f T
k x̄ for k ∈ M0 where dk = bk , fkj =−akj .

For every row with index i ∈ M− multiply the corresponding constraint by 1
ain

.

xn ≥ di + f T
i x̄ for i ∈ M− where di =

bi
ain

, fij =−
aij

ain
.

(3) Return Q.
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Elimination of one variable continued

Q =
{

x̄ ∈ Rn−1 | 0 ≤ dk + f T
k x̄ for all k ∈ M0,

dl + f T
l x̄ ≤ di + f T

i x̄ for all l ∈ M−, i ∈ M+

}
.

Theorem 3. Let S = {1, . . . ,n−1}
The set Q returned in Step 3 is a polyhedron. Moreover, Q = projS(P).

Proof of the first statement
Q is a polyhedron, because we find F ∈Qk×n−1 and f ∈Qk such that

Q =
{

x̄ ∈ Rn−1 | Fx̄ ≤ f
}
.

Let k = |M0|+ |M−||M+|. The rows of F contain all rows of A with index
i ∈ M0. The corresponding right hand side vector satisfies that fi = bi .
The other rows of F are of the form (fl − fi)T for indices l ∈ M− and
i ∈ M+. The corresponding right hand side entry of f is then di −dl .
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Proof continued

projS(P)⊆ Q.
Take any x̄ ∈ projS(P). There exists z ∈ R such that (x̄ ,z) ∈ P. Hence z
satisfies the constraints in Step 2. In particular,

dl + f T
l x̄ ≤ z ≤ di + f T

i x̄ for all l ∈ M−, i ∈ M+.

This shows that x̄ ∈ Q.

Q ⊆ projS(P)

Take any x̄ ∈ Q. It follows that

0 ≤ dk + f T
k x̄ for all k ∈ M0,

dl + f T
l x̄ ≤ di + f T

i x̄ for all l ∈ M−, i ∈ M+

}
.

Let L := max{dl + f T
l x̄ | l ∈ M−} and U := min{di + f T

i x̄ | i ∈ M+}. Take any
value z ∈ [L,U]. Then (x̄ ,z) ∈ P. Hence, x̄ ∈ projS(P).
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Use these projections repeatedly

Lemma
Let A ∈Qm×n, b ∈Qm and P = {x ∈ Rn | Ax ≤ b}. For indices 1 ≤ k < j < n,
consider

S1 = {1, . . . ,n−k} and S2 = {1, . . . ,n− j}.

Then projS2
(P) = projS2

(projS1
(P)).

Proof for k = 1 and j = 2
Let z ∈ projS2

(P). There exist (xn−1,xn) ∈ R2 such that (z,xn−1,xn) ∈ P.
In particular, there exists a value xn such that

(z,xn−1,xn) ∈ P ⇒ (z,xn−1) ∈ projS1
(P) ⇒ z ∈ projS2

(projS1
(P)).

Conversely, take z ∈ projS2
(projS1

(P)), i.e., there exists xn−1 ∈R such that

(z,xn−1) ∈ projS1
(P).

Hence there exists xn ∈ R such that (z,xn−1,xn) ∈ P, i.e., z ∈ projS2
(P).
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The elimination process algebraically

Definition 5
Let A ∈Qm×n, b ∈Qm and P = {x ∈ Rn | Ax ≤ b}.
We define A(j) to be the submatrix of A with column vectors A·,k for
k = 1, . . . , j . Let P(0) = P and C(0) = Rm

+.

Define for i ∈ {1, . . . ,n}

C(i) =
{

y ∈ Rm
+ | yT A·k = 0 for all k = n− i +1, . . . ,n

}
.

P(i) =
{

x̄ ∈ Rn−i | yT A(n−i)x̄ ≤ yT b for all y ∈ C(i)
}
.

Theorem
projSn−i

(P) = P(i).

The proof shows that P(i) is a polyhedron
Polyhedra are closed under projections.
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First part of the proof

projSn−i
(P)⊆ P(i)

Let x̄ ∈ projSn−i
(P). By definition, there exists z ∈ Ri such that

(x̄ ,z) ∈ P.

Hence, (x̄ ,z) satisfies the following inequalities

n−i

∑
k=1

A·k x̄k +
n

∑
k=n−i+1

A·k zk ≤ b.

This implies that for all y ∈ C(i) we obtain that

∑
n−i
k=1 yT A·k x̄k +∑

n
k=n−i+1 yT A·k zk = ∑

n−i
k=1 yT A·k x̄k

= yT A(n−i)x̄ ≤ yT b,

i.e., x̄ ∈ P(i).
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Second part of the proof

P(i) ⊆ projSn−i
(P).

We apply an inductive argument. The base case is i = 1. Recall

C(1) =
{

y ∈ Rm
+ | yT A·n = 0

}
,

P(1) =
{

x̄ ∈ Rn−1 | yT A(n−1)x̄ ≤ yT b for all y ∈ C(1)
}
.

P(1) ⊆ projSn−1
(P) follows by observing:

if one takes y as the unit vector ek for k ∈ M0. Then ek ∈ C(1).
pick two indices l ∈ M− and i ∈ M+. Then

y :=− 1
aln

el +
1

ain
ei ∈ C(1).

The corresponding inequalities obtained from choosing y as described
above are part of the description of Q = projSn−1

(P) in Theorem 3.
The inductive step can be shown similarly.
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Farkas Lemma

Theorem (The Farkas Lemma)
Let A ∈Qm×n, b ∈Qm. Either there exists a vector x ∈ Rn such that Ax ≤ b or
there exists a vector y ∈ Rm such that y ≥ 0,yT A = 0 and yT b < 0.

Proof.
We refer to the notation introduced in Definition 5.

C(n) = {y ∈ Rm
+ | yT A·j = 0 for all j = 1, . . . ,n}= {y ≥ 0 | yT A = 0}.

P(n) = {0 ≤ yT b for all y ∈ C(n)}. We conclude that

P ̸= /0 ⇐⇒ P(1) ̸= /0 ⇐⇒ . . . ⇐⇒ P(n) ̸= /0 ⇐⇒ yT b ≥ 0∀y ≥ 0 with yT A = 0.

Either P ̸= /0 or P = /0. Equivalently: either there exists

x ∈ Rn such that Ax ≤ b or y ∈ Rm such that y ≥ 0, yT A = 0 and yT b < 0.
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