

Robert Weismantel

Lecture 22: Determinants

The determinant as a function over matrices

A function defined for square matrices

Let $A \in \mathbb{R}^{n \times n}$ be a matrix. We consider the function $\det(A) \in \mathbb{R}$. The function value |*det*(*A*)| measures the volume of the parallelopiped

$$
\mathscr{P} = \text{vol}(\{x \in \mathbb{R}^n \mid \exists 0 \leq \lambda_i \leq 1 \text{ for } i = 1,\ldots,n \text{ such that } x = \sum_{i=1}^n \lambda_i A_{\cdot,i}\}).
$$

The following properties hold.

- $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $\det(A) \neq 0$.
- $\det(A) = \det(A^T).$
- Linearity: Let A and B be two matrices in $\mathbb{R}^{n \times n}$ where all rows are equal except for row *i*. Let *C* be the matrix with rows $C_{j,\cdot} = A_{j,\cdot} = B_{j,\cdot}$ for all $j \in \{1,\ldots,n\} \setminus \{i\}$ and $C_{i,\cdot} = A_{i,\cdot} + B_{i,\cdot}$. Then

$$
\det(C) = \det(A) + \det(B).
$$

For matrices A and B in $\mathbb{R}^{n \times n}$ det(AB) = det(A) det(B).

2×2 - matrices

The determinant

• For
$$
A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}
$$
 we define $det(A) = ad - bc$.

• For 2-by-2 matrices A , W we have $\det(AW) = \det(A)\det(W)$.

Proof.

•
$$
A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}
$$
 $W = \begin{bmatrix} x & z \\ y & w \end{bmatrix}$ $AW = \begin{bmatrix} ax + cy & az + cw \\ bx + dy & bz + dw \end{bmatrix}$.
\n
$$
\begin{aligned}\n\text{det}(AW) &= (ax + cy)(bz + dw) - (az + cw)(bx + dy) \\
&= axbz + axdw + cybz + cydw \\
&-azbx - azdy - cwbx - cwdy \\
&= axdw + cybz - azdy - cwbx \\
&= ad(xw - zy) + cb(zy - xw) \\
&= det(A)\det(W).\n\end{aligned}
$$

This computation characterizes when a 2 \times 2-matrix is invertible.

Lemma

A matrix A \in $\mathbb{R}^{2 \times 2}$ *is invertible if and only if* det $(A) \neq 0$ *.*

Proof.

$$
A = \left[\begin{array}{cc} a & c \\ b & d \end{array} \right].
$$

- If *A* is invertible, then $AA^{-1} = I$ implies $\det(A)\det(A^{-1}) = 1$. Hence, $det(A) \neq 0$.
- For the converse direction, assume $\det(A) \neq 0$, i.e., $a \neq 0$ or $b \neq 0$. Wlog. $a \neq 0$. Consider the system of linear equations $AW = I$.

$$
ax + cy = 1
$$
 implies that $x = \frac{1-cy}{a}$
az + cw = 0 implies that $z = \frac{-cw}{a}$.

Proof continued

By substituting $x = \frac{1 - cy}{a}$ $\frac{c-cy}{a}$ and $z = \frac{-cw}{a}$ into $bx + dy = 0$ we get

$$
\frac{b}{a}-\frac{cyb}{a}+dy=0\iff b+y(ad-bc)=0\iff y=\frac{-b}{\det(A)}.
$$

By substituting $x = \frac{1-cy}{a}$ $\frac{-cy}{a}$ and $z = \frac{-cw}{a}$ into $bz + dw = 1$ we obtain

$$
\frac{-bcw}{a}+dw=1\iff -bcw+adw=a\iff w=\frac{a}{\det(A)}.
$$

This gives us a formula for the parameters *z* and *x* in form of

$$
z = \frac{-c}{\det(A)} \text{ and } x = \frac{1 + \frac{cb}{\det(A)}}{a} = \frac{ad - bc + cb}{a \det(A)} = \frac{d}{\det(A)}.
$$

These calculations show that A^{-1} exists whenever $\det(A) \neq 0.$

Definition (Sign of a permutation)

Given a permutation σ : $\{1,\ldots,n\}$ \rightarrow $\{1,\ldots,n\}$ of *n* elements, its sign sgn(σ) can be 1 or −1. The sign counts the parity of the number of pairs of elements that are out of order (sometimes called inversions) after applying the permutation. In other words,

$$
sgn(\sigma) = \begin{cases} 1 & \text{if} \quad |(i,j) \in \{1,\ldots,n\} \times \{1,\ldots,n\} \text{ st } i < j, \sigma(i) > \sigma(j) \text{ even} \\ -1 & \text{if} \quad |(i,j) \in \{1,\ldots,n\} \times \{1,\ldots,n\} \text{ st } i < j, \sigma(i) > \sigma(j) \text{ odd} \end{cases}
$$

Example

 $n = 4$. Consider the permutation π $\pi(1) = 1$, $\pi(2) = 3$, $\pi(3) = 2$, $\pi(4) = 4$. The pairs (i, j) such that $i < j$ are

 $(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).$

For all these pairs (i, j) we see $\pi(i) < \pi(j)$ except for $(2, 3)$. sgn $(\pi) = -1$.

Definition (Π*ⁿ* is the set of all permutations of *n* elements.)

Given $A \in \mathbb{R}^{n \times n}$, the determinant $\det(A)$ is defined as

$$
\det(A) = \sum_{\sigma \in \Pi_n} \text{sgn}(\sigma) \prod_{i=1}^n A_{i,\sigma(i)}.
$$

Remarks

- **1** The sign of a permutation is multiplicative, i.e.: for two permutations σ , γ we have that $sgn(\sigma \circ \gamma) = sgn(\sigma)sgn(\gamma)$.
- ² For all *n* ≥ 2, exactly half of the permutations have sign 1 and exactly half have sign -1 .
- **3** Given a permutation matrix $P \in \mathbb{R}^{n \times n}$ corresponding to a permutation σ , then $det(P) = sgn(\sigma)$. We sometimes also write $sgn(P)$.

1 If *A* is a 1 x 1 matrix: there is one permutation of 1 element which has sign 1. It follows $det(A) = A$.

Further Observations

1 For 2 × 2 matrices: σ_1 is the identity permutation and σ_2 the permutation that swaps the two elements (which has sign -1).

$$
\det(A) = (+1) \prod_{i=1}^2 A_{i,\sigma_1(i)} + (-1) \prod_{i=1}^2 A_{i,\sigma_2(i)} = A_{11}A_{22} - A_{12}A_{21}.
$$

2 Given a triangular (either upper- or lower-) matrix $T \in \mathbb{R}^{n \times n}$ we have $det(\mathcal{T}) = \prod_{k=1}^{n} \mathcal{T}_{kk}$. In particular, $det(\mathcal{I}) = 1$.

Theorem

Given a matrix $A \in \mathbb{R}^{n \times n}$ *we have* $\det(A^{\top}) = \det(A)$.

Proof.

For a permutation σ let σ^{-1} denote the inverse permutation, i.e.,

$$
\sigma(i) = j \iff \sigma^{-1}(j) = i \text{ for all } i, j. \text{ Note } \text{sgn}(\sigma) = \text{sgn}(\sigma^{-1}).
$$

$$
\sum_{\sigma \in \Pi_n} \text{sgn}(\sigma) \prod_{i=1}^n A_{i,\sigma(i)} = \sum_{\sigma^{-1} \in \Pi_n} \text{sgn}(\sigma^{-1}) \prod_{i=1}^n A_{\sigma^{-1}(i),i} = \sum_{\sigma \in \Pi_n} \text{sgn}(\sigma) \prod_{i=1}^n A_{\sigma(i),i}.
$$

General properties of the det-operator

Theorem

- *A matrix A* $\in \mathbb{R}^{n \times n}$ *is invertible if and only if* det $(A) \neq 0$.
- *Given matrices* $A, B \in \mathbb{R}^{n \times n}$ *we have* $\det(AB) = \det(A) \det(B)$.
- *Given a matrix A* $\in \mathbb{R}^{n \times n}$ *such that* det(*A*) \neq 0, then *A* is invertible and

$$
\det(A^{-1}) = \frac{1}{\det(A)}.
$$

Lemma

If $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix then $det(Q) = \pm 1$.

Proof.

 $1=\det(I)=\det(\boldsymbol{Q}^\top \boldsymbol{Q})=\det(\boldsymbol{Q}^\top)\det(\boldsymbol{Q})=\det(\boldsymbol{Q})^2$ and so $\det(\boldsymbol{Q})$ is 1 or -1.

$$
det(A) = \begin{vmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{vmatrix}
$$

= $\begin{vmatrix} A_{11} & A_{12} & A_{13} \\ A_{11} & & A_{12} \\ A_{31} & & A_{33} \end{vmatrix} + \begin{vmatrix} A_{12} & & A_{13} \\ A_{31} & & A_{33} \end{vmatrix} + \begin{vmatrix} A_{12} & & A_{13} \\ A_{31} & & A_{33} \end{vmatrix} + \begin{vmatrix} A_{13} & & A_{14} \\ A_{21} & & A_{23} \\ A_{32} & & A_{32} \end{vmatrix}$

$$
= A_{11}A_{22}A_{33} - A_{12}A_{21}A_{33} + A_{12}A_{23}A_{31}
$$

$$
-A_{13}A_{22}A_{31} + A_{13}A_{21}A_{32} - A_{11}A_{23}A_{32}.
$$

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

3×3 matrices: there are $3! = 6$ permutations.

$$
det(A) = \begin{vmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{vmatrix}
$$

= $\begin{vmatrix} A_{11} & A_{12} & A_{13} \\ A_{11} & A_{22} & A_{13} \\ A_{33} & A_{33} & A_{33} \end{vmatrix} + A_{12} \begin{vmatrix} A_{12} & A_{13} \\ A_{33} & A_{33} \end{vmatrix} + A_{13} \begin{vmatrix} A_{13} & A_{14} \\ A_{21} & A_{22} \\ A_{32} & A_{33} \end{vmatrix}$
= $A_{11}A_{22}A_{33} - A_{12}A_{21}A_{33} + A_{12}A_{23}A_{31} -A_{13}A_{22}A_{31} + A_{13}A_{21}A_{32} - A_{11}A_{23}A_{32}.$

There is another convenient way of writing this determinant

$$
\begin{vmatrix} A_{11} & A_{12} & A_{13} \ A_{21} & A_{22} & A_{23} \ A_{31} & A_{32} & A_{33} \ \end{vmatrix} = A_{11} \begin{vmatrix} A_{22} & A_{23} \ A_{32} & A_{33} \ \end{vmatrix} - A_{12} \begin{vmatrix} A_{21} & A_{23} \ A_{31} & A_{33} \ \end{vmatrix} + A_{13} \begin{vmatrix} A_{21} & A_{22} \ A_{31} & A_{32} \ \end{vmatrix}
$$

 $\overline{}$ $\overline{}$ $\overline{}$ I $\overline{}$ \mid $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

.

Definition

Given $A\in\mathbb{R}^{n\times n}$, for each 1 \leq *i*, j \leq *n* let \mathscr{A}_{ij} denote the $(n-1)\times(n-1)$ matrix obtained by removing row *i* and column *j* from *A*. The co-factors of *A* are

 $C_{ij} = (-1)^{i+j}$ det (\mathcal{A}_{ij}) .

Lemma

Let
$$
A \in \mathbb{R}^{n \times n}
$$
, for any $1 \leq i \leq n$, $det(A) = \sum_{j=1}^{n} A_{ij} C_{ij}$.

Lemma

- *The formula we derived for the inverse of* 2×2 *matrices generalizes:*
- *Given* $A \in \mathbb{R}^{n \times n}$ *with* $\det(A) \neq 0$. Let C be the $n \times n$ matrix with the *co-factors of A as entries. We have* $A^{-1} = \frac{1}{\det(A)} C^\top$ *.*
- *One good way to think of this is AC*[⊤] = det(*A*)*I.*

Cramer's Rule: a formula for linear systems

Example $n = 3$. Assume A is n by n and $det(A) \neq 0$

$$
\begin{bmatrix} A_{11} & A_{12} & A_{13} \ A_{21} & A_{22} & A_{23} \ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix}
$$
, then we have

$$
\begin{bmatrix} A_{11} & A_{12} & A_{13} \ A_{21} & A_{22} & A_{23} \ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} x_1 & 0 & 0 \ x_2 & 1 & 0 \ x_3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} b_1 & A_{12} & A_{13} \ b_2 & A_{22} & A_{23} \ b_3 & A_{32} & A_{33} \end{bmatrix}
$$

The determinant is multiplicative

and the determinant of the second matrix in the expression is *x*1, i.e., we get

$$
\det(A)x_1=\det(\mathscr{B}_1),
$$

where \mathscr{B}_1 is the matrix obtained from A by replacing its first column by *b*. This applies to any any of the columns of *A* and hence, $x_i = \det(\mathcal{B}_i)/\det(A)$.

If

1 $\vert \cdot$

Theorem (Cramer's Rule)

 $\mathsf{Let}\ A \in \mathbb{R}^{n \times n}$ *such that* $\mathsf{det}(A) \neq 0$ *and* $b \in \mathbb{R}^n$ *then the solution* $x \in \mathbb{R}^n$ *of* $Ax = b$ *is given by*

> $x_j = \frac{\det(\mathcal{B}_j)}{\det(\mathbf{A})}$ $\frac{(y')'}{\det(A)}$,

where \mathscr{B}_j is the matrix obtained from A by replacing its j-th column by b.

Lemma

The determinant is linear in each row (or each column). In other words, for $\mathit{any}\ a_0, a_1, a_2 \ldots, a_n \in \mathbb{R}^n \ and\ \alpha_0, \alpha_1 \in \mathbb{R} \ we\ have$

$$
\begin{vmatrix} - & \alpha_0 a_0^\top + \alpha_1 a_1^\top & - \\ - & a_2^\top & - \\ - & & \vdots & \\ - & & a_n^\top & - \end{vmatrix} = \alpha_0 \begin{vmatrix} - & a_0^\top & - \\ - & a_2^\top & - \\ \vdots & & \vdots \\ - & a_n^\top & - \end{vmatrix} + \alpha_1 \begin{vmatrix} - & a_1^\top & - \\ - & a_2^\top & - \\ \vdots & & \vdots \\ - & a_n^\top & - \end{vmatrix},
$$

and symmetrically for the columns.