Linear Algebra ETH Zürich, HS 2023, 401-0131-00L

The Computer Science Lens

Lights Out!

Bernd Gärtner

October 23, 2024

F-vector spaces – where **F** is a *field* (\mathbb{R} is only one of many fields)

A \mathbb{F} -vector space¹ is a triple (V, +, ·) where V is a set (the vectors), and

+ : $V \times V \rightarrow V$ a function (vector addition), · : $\mathbb{F} \times V \rightarrow V$ a function (scalar multiplication),

satisfying the following *axioms* (rules) for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all $c, d \in \mathbb{F}$.

1.
$$\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$$
commutativity2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ associativity3.There is a vector $\mathbf{0}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all \mathbf{v} zero vector4.There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$ negative vector5. $1 \cdot \mathbf{v} = \mathbf{v}$ identity element6. $(c \cdot d)\mathbf{v} = c \cdot (d \cdot \mathbf{v})$ compatibility7. $c(\mathbf{v} + \mathbf{w}) = c\mathbf{v} + c\mathbf{w}$ distributivity over +8. $(c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}$ the second second

 $^{^1\,\}text{``real''}$ stands for real numbers $c\in\mathbb{R}$ as scalars

Fields

A field is a triple (F, +, \cdot) where F is a set (the numbers), and

+ : $F \times F \to F$ a function (addition of two numbers), · : $F \times F \to F$ a function (multiplication of two numbers),

satisfying the following *axioms* (rules) for all $a, b, c \in \mathbb{F}$:

don't learn them by heart!	1.	a + b = b + a	commutativity of $+$
	2.	$a \cdot b = b \cdot a$	commutativity of \cdot
	3.	a + (b + c) = (a + b) + c	associativity of $+$
	4.	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$	associativity of \cdot
	5.	there is a number 0 such that $a + 0 = a$ for all a	zero
	6.	there is a number $1 eq 0$ such that $a \cdot 1 = a$ for all a	one
	7.	There is a number $-a$ such that $a+(-a)=0$	negative
	8.	If $a \neq 0$, there is a number a^{-1} such that $a \cdot a^{-1} = 1$	inverse
	9.	$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$	distributivity

Examples of fields

- ▶ ℝ (real numbers)
- ▶ C (complex numbers)
- Q (rational numbers)

Non-examples:

- ▶ \mathbb{Z} (integers): no inverses
- \blacktriangleright IN (natural numbers): no negatives

Finite fields of prime order (very important in cryptography):

• $\mathbb{F}_p = (\{0, 1, \dots, p-1\}, +, \cdot)$, where p is a prime number.

$$a + b = (\underbrace{a + b}_{+ \text{ in } \mathbb{N}} \mod p$$

 $a \cdot b = (\underbrace{a \cdot b}_{+ \text{ in } \mathbb{N}} \mod p$

▶ p = 2 : $\mathbb{F}_2 = (\{0, 1\}, +, \cdot)$. The *smallest possible* field (every field has 0 and 1).

$$(a+b) \mod 2: \begin{array}{c|c} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \qquad (a \cdot b) \mod 2: \begin{array}{c|c} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}$$

In all cases, the field axioms have been checked.

The field \mathbb{F}_2 : Calculating with bits (value 0 or 1)

Adding two bits: the logical exclusive or

$$\begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \qquad b_1 + b_2 = \left\{ \begin{array}{ccccc} 1 & \text{if either } b_1 = 1 \text{ or } b_2 = 1 \\ 0 & \text{otherwise} \end{array} \right. = b_1 \text{ XOR } b_2$$

Multiplying two bits: the logical and

$$\begin{array}{c|cccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array} \qquad b_2 \cdot b_2 = \begin{cases} 1 & \text{if } b_1 = 1 \text{ and } b_2 = 1 \\ 0 & \text{otherwise} \end{cases} \qquad \qquad = b_1 \text{ AND } b_2$$

Adding more bits:

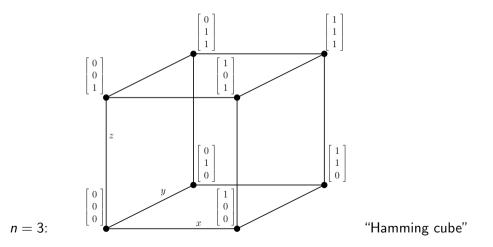
$$b_1 + b_2 + \dots + b_n = \begin{cases} 1 & \text{if an odd number of } b_i \text{'s is 1} \\ 0 & \text{if an even number of } b_i \text{'s is 1} \end{cases} \qquad \begin{array}{c} 0 + 1 + 1 + 0 + 1 & = 1 \\ 1 + 0 + 1 + 1 + 1 & = 0 \end{cases}$$

4 mod 2

For every field \mathbb{F} , we have the \mathbb{F} -vector space \mathbb{F}^n (if $\mathbb{F} = \mathbb{R}$, this is \mathbb{R}^n) Vectors: $\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$, where $v_1, v_2, \ldots, v_n \in \mathbb{F}$. Vector addition: Scalar multiplication: $c \cdot \begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{vmatrix} = \begin{vmatrix} c \cdot v_1 \\ c \cdot v_2 \\ \vdots \\ c \cdot tv_n \end{vmatrix}, \quad \text{where } \cdot \text{ is the multiplication in } \mathbb{F}$

Bit vectors: elements of the vector space \mathbb{F}_2^n

 \mathbb{F}_2^n contains 2^n vectors.

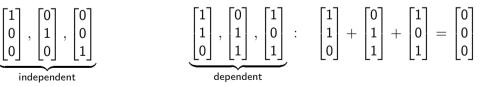


Linear combinations in \mathbb{F}_2^n

$$\begin{array}{ccc} \lambda_1 \mathbf{v}_1 + \dots + & \lambda_i \mathbf{v}_i & + \dots + \lambda_n \mathbf{v}_n \\ & \downarrow \\ & 1 : \mathsf{take} \ \mathbf{v}_i \\ & 0 : \mathsf{don't} \ \mathsf{take} \ \mathbf{v}_i \end{array}$$

Combinations are just sums of vectors (the ones we take).

Vectors are independent if we can only get $\mathbf{0}$ by taking none of them.



In \mathbb{R}^3 , these three vectors would be independent!

Systems of linear equations in \mathbb{F}^n

Everything we do in \mathbb{R}^n works the same way in \mathbb{F}^n :

- Matrices
- ► Ax = b and Gauss elimination
- Inverse matrices
- Gauss-Jordan elimination
- Full solution of $A\mathbf{x} = \mathbf{b}$ (Week 7)

•

Example (\mathbb{F}_2^5): solve for the bit vector **x**!

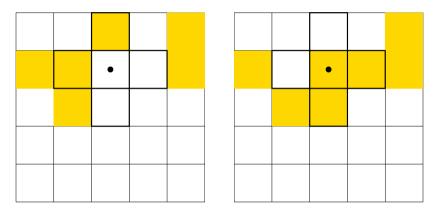
$$\begin{bmatrix} 1 & & & \\ 1 & 1 & & \\ 0 & 1 & 1 & \\ 0 & 0 & 1 & 1 & \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Take columns 1, 3, 5

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Application: Game "Lights out!"

 $n \times n$ grid of buttons (original game: 5×5), some are on (yellow):

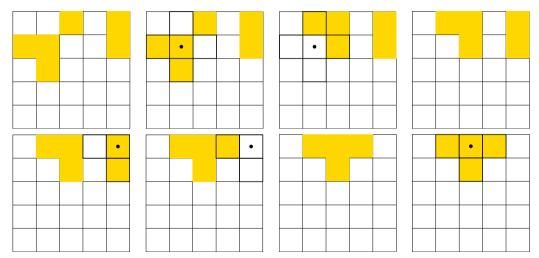


Pressing a button... switches it (on \leftrightarrow off) and all its neighbors.

Goal: Repeatedly press buttons until all are off!

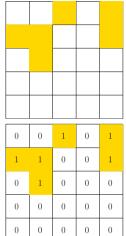
Lights Out!

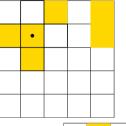
Solution



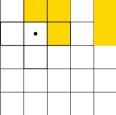
Done after this button!

First solution step, mathematically

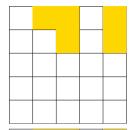


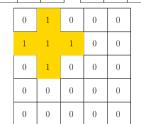


+



_



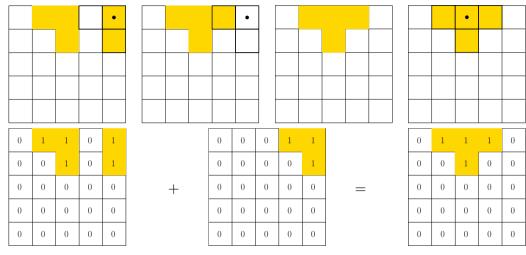


vector in \mathbb{F}_2^{25}

"button vector" \mathbf{b}_7 in \mathbb{F}_2^{25}

vector in \mathbb{F}_2^{25}

Second solution step, mathematically



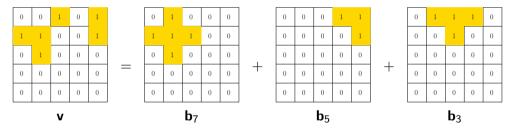
vector in \mathbb{F}_2^{25}

"button vector" \mathbf{b}_5 in \mathbb{F}_2^{25}

vector in \mathbb{F}_2^{25}

Lights Out, mathematically

Given a vector $\mathbf{v} \in \mathbb{F}_2^{25}$, produce $\mathbf{0} \in \mathbb{F}_2^{25}$ by adding suitable button vectors! Same problem ("play the game backwards"): starting from $\mathbf{0}$, produce \mathbf{v} by adding suitable button vectors!



No button vector is needed twice $(\mathbf{b}_i + \mathbf{b}_i = \mathbf{0}, \text{ no effect})$.

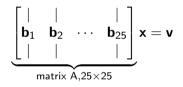
Order of button vectors doesn't matter (commutativity)!

Lights Out: A system of linear equations in \mathbb{F}_2^{25} ! To win the game with initial configuration $\mathbf{v} \in \mathbb{F}_2^{25}$, solve

$$\mathbf{v} = x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \cdots + x_{25}\mathbf{b}_{25}$$

with all $x_i \in \mathbb{F}_2$ (0 or 1).

This is a system of linear equations with 25 equations in 25 unknowns:



This system has been analyzed [AF98]:

- ▶ The matrix *A* is quadratic but *not* invertible.
- Using Gauss-Jordan elimination, we can still solve this system.
- This allows you to win Lights Out whenever this is possible (it isn't always)!

References

Marlow Anderson and Todd Feil.

Turning lights out with linear algebra.

Mathematics Magazine, 71(4):300-303, 1998. https://doi.org/10.1080/0025570X.1998.11996658.