

Robert Weismantel

Week 10: The Gram-Schmidt Process and the pseudoinverse of a matrix

Preparations for the Gram-Schmidt Process

Our task

Construct an orthonormal basis of a given subspace $S \subseteq \mathbb{R}^m$. The subspace is presented by a basis, i.e., vectors a_1, \ldots, a_n such that $S = \text{Span}(a_1, \ldots, a_n)$.

The idea for two vectors

Let a_1 , a_2 be linearly independent and $S = \{a_1x_1 + a_2x_2 \mid x_1, x_2 \in \mathbb{R}\}$: we first normalize a_1 : $q_1 = \frac{a_1}{\|a_1\|}$, then subtract from a_2 a multiple of q_1 so that it becomes orthogonal to q_1 , followed by a normalization step:

$$q_2 = rac{a_2 - (a_2^{\top} q_1) q_1}{\|a_2 - (a_2^{\top} q_1) q_1\|}.$$
 Note: $a_2 - (a_2^{\top} q_1) q_1 \neq 0.$

Claim: q_1, q_2 are orthogonal.

$$q_1^{\top}q_2 = q_1^{\top} \frac{a_2 - (a_2^{\top}q_1)q_1}{\|a_2 - (a_2^{\top}q_1)q_1\|} = \frac{q_1^{\top}a_2 - (a_2^{\top}q_1)q_1^{\top}q_1}{\|a_2 - (a_2^{\top}q_1)q_1\|} = \frac{0}{\|a_2 - (a_2^{\top}q_1)q_1\|} = 0.$$

For more vectors:

remove from a vector a_{k+1} the projection of it on the subspace spanned by the *k* vectors before.

Gram-Schmidt Algorithm

Given *n* linearly independent vectors a_1, \ldots, a_n that span a subspace *S*, the Gram-Schmidt process constructs q_1, \ldots, q_n in the following way:

•
$$q_1 = \frac{a_1}{\|a_1\|}$$
.

• For
$$k = 2, ..., n$$
 do

•
$$q'_k = a_k - \sum_{i=1}^{k-1} (a_k^\top q_i) q_i$$

•
$$q_k = \frac{q_k}{\|q'_k\|}$$
.

Theorem (Correctness of Gram-Schmidt)

Given n linearly independent vectors a_1, \ldots, a_n , the Gram-Schmidt process outputs an orthonormal basis for the span of a_1, \ldots, a_n .

Proof by induction

Let S_k be the subspace spanned by a_1, \ldots, a_k . Then $S = S_n$.

Claim: q_1, \ldots, q_k are an orthonormal basis for S_k

It is enough to show that $q_1, \ldots, q_k \in S_k$ and are orthonormal. (orthonormality implies linearly independence and S_k has dimension k)

The steps

O Base case: $||q_1|| = 1$ and q_1 is a multiple of a_1 and so $q_1 \in S_1$.

2 Assume the hypothesis for i = 1, ..., k - 1:

- Since a_k is linearly independent from the other original vectors it is not in S_{k-1} and so $q'_k \neq 0$. Thus $||q_k|| = 1$.
- By construction $a_k \in S_k$ and so $q_k \in S_k$.
- Let $1 \le j \le k-1$. Since q_1, \ldots, q_{k-1} are orthonormal, we have

$$q_{j}^{\top}\left(a_{k}-\sum_{i=1}^{k-1}(a_{k}^{\top}q_{i})q_{i}\right)=q_{j}^{\top}a_{k}-\sum_{i=1}^{k-1}(a_{k}^{\top}q_{i})q_{j}^{\top}q_{i}=q_{j}^{\top}a_{k}-(a_{k}^{\top}q_{j})=0,$$

and
$$q_j^\top q_k = \frac{1}{\|q_k'\|} q_j^\top q_k' = 0.$$

A first application of the Gram-Schmidt Process

Gram-Schmidt actually provides us with a new matrix factorization.

Definition (QR decomposition)

Let *A* be an $m \times n$ matrix with linearly independent columns. The QR decomposition is given by

$$A = QR$$
,

where *Q* is an $m \times n$ matrix with orthonormal columns returned by the Gram Schmidt Algorithm and *R* is an upper triangular matrix given by $R = Q^{\top}A$.

It requires us to show that indeed this is a proper definition.

Lemma

The matrix R defined before is upper triangular. Moreover, R is invertible and $QQ^T A = A$.

Proof of the lemma

R is upper triangular

- We have that $Q^T Q = I$ and hence, $q_k^T q_i = 0$ for all i = 1, ..., k 1.
- q_1, \ldots, q_{k-1} and a_1, \ldots, a_{k-1} span subspace S_{k-1} . Hence,

$$q_k^T a_i = 0$$
 for all $i = 1, ..., k - 1$.

• Hence $R = Q^T A$ is upper triangular.

Moreover, C(Q) = C(A)

• Since $Q^T Q = I$ we obtain for the projection matrix onto the subspace C(Q) = C(A) the formula $Q(Q^T Q)^{-1} Q^T = QQ^T$ and notice, for every index *i*,

$$\operatorname{proj}_{S_n}(a_i) = a_i = QQ^T a_i \quad \Longleftrightarrow \quad QR = QQ^T A = A.$$

N(A) = {0} and since A = QR, we must have that N(R) = {0}. Since R is a matrix of size n by n, we notice that R is invertible.

The *QR* decomposition is computationally useful.

Recall C(A) = C(Q)

Projections on C(A) can be done with Q, i.e., $\operatorname{proj}_{C(A)}(b) = QQ^{\top}b$.

The least squares solution min $||Ax - b||^2$:

is the point \hat{x} solving the normal equations

$$A^{\top}A\hat{x}=A^{\top}b.$$

• Furthermore, $A^{\top}A = (QR)^{\top}(QR) = R^{\top}Q^{\top}QR = R^{\top}R$, and so we can write

$$\boldsymbol{R}^{\top}\boldsymbol{R}\hat{\boldsymbol{x}} = \boldsymbol{R}^{\top}\boldsymbol{Q}^{\top}\boldsymbol{b}.$$
 (1)

• Since R is invertible, R^T is invertible and so we can simplify (1) to

$$R\hat{x} = Q^{\top}b$$
,

which can be solved fast by back-substitution since *R* is triangular.

Robert Weismantel

(2)

The Pseudoinverse or Moore–Penrose Inverse

Our next task

construct an analogue to the inverse of a matrix A for matrices that have no inverse. This is called the pseudoinverse and we will denote it by A^{\dagger} .

The hurdles to overcome

- For some vectors *b* there might not be a vector *x* such that Ax = b.
- For some vectors *b* there may be more than one *x* such that *Ax* = *b* and we must pick one.
- Even if we make such choices, it is not clear that such operation will correspond to multiplying by a matrix A[†].

Our plan to take the hurdles

- Develop a pseudoinverse for matrices with full column rank.
- Develop a pseudoinverse for matrices with full row rank.
- Write a general matrix as as product of two matrices: one of full column rank and one of full row rank.

The intuition

If the columns of *A* are linearly independent it makes sense to build A^{\dagger} such that $A^{\dagger}b$ is the Least Squares Solution $\hat{x} = (A^{\top}A)^{-1}A^{\top}b$ (the vector \hat{x} such that $A\hat{x}$ is as close as possible to *b*).

Definition (Pseudoinverse for matrices with full column rank)

For $A \in \mathbb{R}^{m \times n}$ with rank(A) = n we define the pseudo-inverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ of A as $A^{\dagger} = (A^{\top}A)^{-1}A^{\top}.$

Proposition

- For A ∈ ℝ^{m×n} with rank(A) = n, the pseudoinverse A[†] is a left inverse of A, meaning that A[†]A = I.
- Proof. rank(A) = n, $A^{\top}A$ is invertible. Hence, $A^{\dagger}A = (A^{\top}A)^{-1}A^{\top}A = I$.

The intuition

If the rows of A are linearly independent, then A^T has full column rank and we use the pseudo-inverse for A^T to define a pseudo-inverse of A.

Definition (Pseudoinverse for matrices with full row rank)

For $A \in \mathbb{R}^{m \times n}$ with rank(A) = m we define the pseudo-inverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ of A as $A^{\dagger} = A^{\top} (AA^{\top})^{-1}$.

Proposition

- For A ∈ ℝ^{m×n} with rank(A) = m, the pseudoinverse A[†] is a right inverse of A, meaning that AA[†] = I.
- Proof. rank(A) = m, AA^{\top} is invertible. Hence, $AA^{\dagger} = AA^{\top}(AA^{\top})^{-1} = I$.

What do we achieve with the pseudo-inverse here?

Since *A* is full row rank, for all $b \in \mathbb{R}^m$, there exists $x \in \mathbb{R}^n$ such that Ax = b. There are many such vectors. Choose one with smallest norm.

$$\min_{\substack{\mathbf{x}\in\mathbb{R}^n\\ \mathbf{s}.t.}} \|\mathbf{x}\|^2$$
(3)
 $s.t. \quad \mathbf{A}\mathbf{x} = \mathbf{b}.$

Lemma

For a full row rank matrix A, the (unique) solution to (3) is given by the vector $\hat{x} \in C(A^{\top})$ that satisfies the constraint $A\hat{x} = b$.

Claim: $\hat{x} = A^{\dagger}b$ is the solution to (3).

Proof follows from the lemma by noting that

$$A\hat{x} = AA^{\dagger}b = AA^{\top}(AA^{\top})^{-1}b = b$$
 and hence, $A\hat{x} = b$.

$\hat{x} \in C(A^{\top})$

$$\hat{x} = A^{\dagger}b = A^{\top}\left((AA^{\top})^{-1}b\right).$$

A solution to (3) is equivalent to

Let x_1 be a vector such that $Ax_1 = b$. The set of solutions to Ax = b are $\{x_1 + y \mid y \in N(A)\}$. Minimize $||x_1 + y||$ among all vectors $y \in N(A)$.

$x_1 - \operatorname{proj}_{N(A)}(x_1)$ is the solution to (3).

•
$$x_1 = (x_1 - \operatorname{proj}_{N(A)}(x_1)) + \operatorname{proj}_{N(A)}(x_1)$$
. Since $y \in N(A)$ we have that $(x_1 - \operatorname{proj}_{N(A)}(x_1)) \perp (y + \operatorname{proj}_{N(A)}(x_1))$ and so

$$\|x_{1} + y\|^{2} = \left\| \left(x_{1} - \operatorname{proj}_{N(A)}(x_{1}) \right) + \operatorname{proj}_{N(A)}(x_{1}) + y \right\|^{2}$$

= $\left\| x_{1} - \operatorname{proj}_{N(A)}(x_{1}) \right\|^{2} + \left\| \operatorname{proj}_{N(A)}(x_{1}) + y \right\|^{2} \ge \left\| x_{1} - \operatorname{proj}_{N(A)}(x_{1}) \right\|^{2}$

Pseudoinverse for matrices in general

Finally, $x_1 - \text{proj}_{N(A)}(x_1)$ is orthogonal to N(A).

Since $N(A)^{\perp} = C(A^{\top})$, we observe that $x_1 - \operatorname{proj}_{N(A)}(x_1) \in C(A^{\top})$.

The idea based on the CR decomposition:

The CR decomposition writes A = CR where $C \in \mathbb{R}^{m \times r}$ has the first *r* linearly independent columns of *A* and $R \in \mathbb{R}^{r \times n}$ is upper triangular. Note that *C* is full column rank and *R* is full row rank.

Definition (Pseudoinverse for all matrices)

For $A \in \mathbb{R}^{m \times n}$, with rank(A) = r, with CR decomposition A = CR we define the pseudoinverse A^{\dagger} as

$$\mathbf{A}^{\dagger}=\mathbf{R}^{\dagger}\mathbf{C}^{\dagger},$$

$$A^{\dagger} = R^{\top} \left(RR^{\top} \right)^{-1} \left(C^{\top} C \right)^{-1} C^{\top} = R^{\top} \left(C^{\top} CRR^{\top} \right)^{-1} C^{\top} = R^{\top} \left(C^{\top} AR^{\top} \right)^{-1} C^{\top}.$$

What does a pseudoinverse for matrices give us?

Lemma

For $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^n$, the (unique) solution to (*) is given by $\hat{x} = A^{\dagger}b$.

(*)
$$\min\left\{ \|x\|^2 \text{ s.t. } x \in \mathbb{R}^n, A^\top A x = A^\top b \right\}$$

Proof.

- Let *r* be the rank of *A* and A = CR with $C \in \mathbb{R}^{m \times r}$ and $R \in \mathbb{R}^{r \times n}$.
- Then $\hat{x} = A^{\dagger}b = R^{\top} (C^{\top}AR^{\top})^{-1} C^{\top}b$. Thus,

$$\begin{aligned} A^{\top}A\hat{x} &= A^{\top}AR^{\top}\left(C^{\top}AR^{\top}\right)^{-1}C^{\top}b \\ &= R^{\top}C^{\top}AR^{\top}\left(C^{\top}AR^{\top}\right)^{-1}C^{\top}b = R^{\top}C^{\top}b = A^{\top}b. \end{aligned}$$

- Hence we have verified that x̂ satisfies the normal equations.
- $C(A^T A) = C(A^T) = C(R^T)$ and since $\hat{x} = R^T (C^T A R^T)^{-1} C^T b$, we have verified that $\hat{x} \in C(A^T A)$. The result follows with the previous lemma.

A few properties of the pseudo-inverse

Theorem (Let $A \in \mathbb{R}^{m \times n}$.)

- $AA^{\dagger}A = A$ and $A^{\dagger}AA^{\dagger} = A^{\dagger}$.
- **2** AA^{\dagger} is symmetric. It is the projection matrix for projection on C(A),
- **(3)** $A^{\dagger}A$ is symmetric. It is the projection matrix for projection on $C(A^{\top})$.

 $(\mathbf{A}^{\top})^{\dagger} = (\mathbf{A}^{\dagger})^{\top}.$

Proof.

- Let us plug in $A^{\dagger} = R^{\top} (C^{\top} A R^{\top})^{-1} C^{\top}$ to calculate $AA^{\dagger}A = CRR^{T} (C^{T} CRR^{T})^{-1} C^{T} CR = CRR^{T} (RR^{T})^{-1} (C^{T} C)^{-1} C^{T} CR = CR = A.$
- AA[†] is symmetric because

$$CRR^{T}(RR^{T})^{-1}(C^{T}C)^{-1}C^{T} = C(C^{T}C)^{-1}C^{T} = \left(C(C^{T}C)^{-1}C^{T}\right)^{T} = (AA^{\dagger})^{T}$$

• The columns of *C* are a basis of C(A). Hence, $AA^{\dagger} = C(C^{T}C)^{-1}C^{T}$ is the projection matrix for projecting onto C(A).