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Week 10: The Gram-Schmidt Process and the
pseudoinverse of a matrix



Preparations for the Gram-Schmidt Process

Our task
Construct an orthonormal basis of a given subspace S ⊆ Rm. The subspace
is presented by a basis, i.e., vectors a1, . . . ,an such that S = Span(a1, . . . ,an).

The idea for two vectors
Let a1, a2 be linearly independent and S = {a1x1 +a2x2 | x1,x2 ∈ R}: we first
normalize a1: q1 = a1

∥a1∥
, then subtract from a2 a multiple of q1 so that it

becomes orthogonal to q1, followed by a normalization step:

q2 =
a2 − (a⊤

2 q1)q1∥∥a2 − (a⊤
2 q1)q1

∥∥ . Note: a2 − (a⊤
2 q1)q1 ̸= 0.

Claim: q1,q2 are orthogonal.

q⊤
1 q2 = q⊤

1
a2 − (a⊤

2 q1)q1∥∥a2 − (a⊤
2 q1)q1

∥∥ =
q⊤

1 a2 − (a⊤
2 q1)q⊤

1 q1∥∥a2 − (a⊤
2 q1)q1

∥∥ =
0∥∥a2 − (a⊤
2 q1)q1

∥∥ = 0.
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The Gram-Schmidt Process

For more vectors:
remove from a vector ak+1 the projection of it on the subspace spanned by
the k vectors before.

Gram-Schmidt Algorithm
Given n linearly independent vectors a1, . . . ,an that span a subspace S, the
Gram-Schmidt process constructs q1, . . .qn in the following way:

q1 = a1
∥a1∥

.

For k = 2, . . . ,n do
q′

k = ak −∑
k−1
i=1 (a

⊤
k qi )qi

qk =
q′

k
∥q′

k∥
.

Theorem (Correctness of Gram-Schmidt)
Given n linearly independent vectors a1, . . . ,an, the Gram-Schmidt process
outputs an orthonormal basis for the span of a1, . . . ,an.
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Proof by induction
Let Sk be the subspace spanned by a1, . . . ,ak . Then S = Sn.

Claim: q1, . . . ,qk are an orthonormal basis for Sk

It is enough to show that q1, . . . ,qk ∈ Sk and are orthonormal. ( orthonormality
implies linearly independence and Sk has dimension k )

The steps
1 Base case: ∥q1∥= 1 and q1 is a multiple of a1 and so q1 ∈ S1.
2 Assume the hypothesis for i = 1, . . .k −1:

Since ak is linearly independent from the other original vectors it is not in
Sk−1 and so q′

k ̸= 0. Thus ∥qk∥= 1.
By construction ak ∈ Sk and so qk ∈ Sk .
Let 1 ≤ j ≤ k −1. Since q1, . . . ,qk−1 are orthonormal, we have

q⊤
j

(
ak −

k−1

∑
i=1

(a⊤
k qi )qi

)
= q⊤

j ak −
k−1

∑
i=1

(a⊤
k qi )q

⊤
j qi = q⊤

j ak − (a⊤
k qj ) = 0,

and q⊤
j qk = 1

∥q′
k∥

q⊤
j q′

k = 0.

Robert Weismantel November 20, 2024 4 / 15



A first application of the Gram-Schmidt Process

Gram-Schmidt actually provides us with a new matrix factorization.

Definition (QR decomposition)
Let A be an m×n matrix with linearly independent columns. The QR
decomposition is given by

A = QR,

where Q is an m×n matrix with orthonormal columns returned by the Gram
Schmidt Algorithm and R is an upper triangular matrix given by R = Q⊤A.

It requires us to show that indeed this is a proper definition.

Lemma
The matrix R defined before is upper triangular. Moreover, R is invertible and
QQT A = A.
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Proof of the lemma

R is upper triangular
We have that QT Q = I and hence, qT

k qi = 0 for all i = 1, . . .k −1.
q1, . . . ,qk−1 and a1, . . . ,ak−1 span subspace Sk−1. Hence,

qT
k ai = 0 for all i = 1, . . . ,k −1.

Hence R = QT A is upper triangular.

Moreover, C(Q) = C(A)
Since QT Q = I we obtain for the projection matrix onto the subspace
C(Q) = C(A) the formula Q(QT Q)−1QT = QQT and notice, for every
index i ,

projSn(ai) = ai = QQT ai ⇐⇒ QR = QQT A = A.

N(A) = {0} and since A = QR, we must have that N(R) = {0}. Since R is
a matrix of size n by n, we notice that R is invertible.
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The QR decomposition is computationally useful.

Recall C(A) = C(Q)

Projections on C(A) can be done with Q, i.e., projC(A)(b) = QQ⊤b.

The least squares solution min∥Ax −b∥2:
is the point x̂ solving the normal equations

A⊤Ax̂ = A⊤b.

Furthermore, A⊤A = (QR)⊤(QR) = R⊤Q⊤QR = R⊤R, and so we can
write

R⊤Rx̂ = R⊤Q⊤b. (1)

Since R is invertible, RT is invertible and so we can simplify (1) to

Rx̂ = Q⊤b, (2)

which can be solved fast by back-substitution since R is triangular.
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The Pseudoinverse or Moore–Penrose Inverse

Our next task
construct an analogue to the inverse of a matrix A for matrices that have no
inverse. This is called the pseudoinverse and we will denote it by A†.

The hurdles to overcome
For some vectors b there might not be a vector x such that Ax = b.
For some vectors b there may be more than one x such that Ax = b and
we must pick one.
Even if we make such choices, it is not clear that such operation will
correspond to multiplying by a matrix A†.

Our plan to take the hurdles
Develop a pseudoinverse for matrices with full column rank.
Develop a pseudoinverse for matrices with full row rank.
Write a general matrix as as product of two matrices: one of full column
rank and one of full row rank.
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Pseudoinverse for matrices with full column rank

The intuition
If the columns of A are linearly independent it makes sense to build A† such
that A†b is the Least Squares Solution x̂ = (A⊤A)−1A⊤b (the vector x̂ such
that Ax̂ is as close as possible to b).

Definition (Pseudoinverse for matrices with full column rank)
For A ∈ Rm×n with rank(A) = n we define the pseudo-inverse A† ∈ Rn×m of A
as

A† = (A⊤A)−1A⊤.

Proposition
For A ∈ Rm×n with rank(A) = n, the pseudoinverse A† is a left inverse of
A, meaning that A†A = I.
Proof. rank(A) = n, A⊤A is invertible. Hence, A†A = (A⊤A)−1A⊤A = I.
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Pseudoinverse for matrices with full row rank

The intuition
If the rows of A are linearly independent, then AT has full column rank and we
use the pseudo-inverse for AT to define a pseudo-inverse of A.

Definition (Pseudoinverse for matrices with full row rank)
For A ∈ Rm×n with rank(A) = m we define the pseudo-inverse A† ∈ Rn×m of A
as

A† = A⊤(AA⊤)−1.

Proposition
For A ∈ Rm×n with rank(A) = m, the pseudoinverse A† is a right inverse of
A, meaning that AA† = I.
Proof. rank(A) = m, AA⊤ is invertible. Hence, AA† = AA⊤(AA⊤)−1 = I.
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What do we achieve with the pseudo-inverse here?
Since A is full row rank, for all b ∈ Rm, there exists x ∈ Rn such that Ax = b.
There are many such vectors. Choose one with smallest norm.

min
x∈Rn

∥x∥2 (3)

s.t . Ax = b.

Lemma
For a full row rank matrix A, the (unique) solution to (3) is given by the vector
x̂ ∈ C(A⊤) that satisfies the constraint Ax̂ = b.

Claim: x̂ = A†b is the solution to (3).
Proof follows from the lemma by noting that

Ax̂ = AA†b = AA⊤(AA⊤)−1b = b and hence, Ax̂ = b.

x̂ ∈ C(A⊤)

x̂ = A†b = A⊤
(
(AA⊤)−1b

)
.
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Proof of the lemma

A solution to (3) is equivalent to
Let x1 be a vector such that Ax1 = b. The set of solutions to Ax = b are
{x1 +y | y ∈ N(A)}. Minimize ∥x1 +y∥ among all vectors y ∈ N(A).

x1 −projN(A)(x1) is the solution to (3).

x1 =
(

x1 −projN(A)(x1)
)
+projN(A)(x1). Since y ∈ N(A) we have that(

x1 −projN(A)(x1)
)
⊥
(

y +projN(A)(x1)
)

and so

∥x1 +y∥2 =
∥∥∥(x1 −projN(A)(x1)

)
+projN(A)(x1)+y

∥∥∥2

=
∥∥∥x1 −projN(A)(x1)

∥∥∥2
+
∥∥∥projN(A)(x1)+y

∥∥∥2
≥
∥∥∥x1 −projN(A)(x1)

∥∥∥2
.
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Pseudoinverse for matrices in general

Finally, x1 −projN(A)(x1) is orthogonal to N(A).

Since N(A)⊥ = C(A⊤), we observe that x1 −projN(A)(x1) ∈ C(A⊤).

The idea based on the CR decomposition:
The CR decomposition writes A = CR where C ∈ Rm×r has the first r linearly
independent columns of A and R ∈ Rr×n is upper triangular. Note that C is full
column rank and R is full row rank.

Definition (Pseudoinverse for all matrices)
For A ∈ Rm×n, with rank(A) = r , with CR decomposition A = CR we define the
pseudoinverse A† as

A† = R†C†,

A† =R⊤
(

RR⊤
)−1(

C⊤C
)−1

C⊤=R⊤
(

C⊤CRR⊤
)−1

C⊤=R⊤
(

C⊤AR⊤
)−1

C⊤.
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What does a pseudoinverse for matrices give us?

Lemma
For A ∈ Rm×n and b ∈ Rn, the (unique) solution to (∗) is given by x̂ = A†b.

(∗) min
{
∥x∥2 s.t. x ∈ Rn,A⊤Ax = A⊤b

}
Proof.

Let r be the rank of A and A = CR with C ∈ Rm×r and R ∈ Rr×n.
Then x̂ = A†b = R⊤ (C⊤AR⊤)−1 C⊤b. Thus,

A⊤Ax̂ = A⊤AR⊤ (C⊤AR⊤)−1 C⊤b
= R⊤C⊤AR⊤ (C⊤AR⊤)−1 C⊤b = R⊤C⊤b = A⊤b.

Hence we have verified that x̂ satisfies the normal equations.

C(AT A) = C(AT ) = C(RT ) and since x̂ = R⊤ (C⊤AR⊤)−1 C⊤b, we have
verified that x̂ ∈ C(A⊤A). The result follows with the previous lemma.
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A few properties of the pseudo-inverse

Theorem (Let A ∈ Rm×n.)
1 AA†A = A and A†AA† = A†.
2 AA† is symmetric. It is the projection matrix for projection on C(A),
3 A†A is symmetric. It is the projection matrix for projection on C(A⊤).
4
(
A⊤)†

=
(
A†
)⊤.

Proof.

Let us plug in A† = R⊤ (C⊤AR⊤)−1 C⊤ to calculate AA†A =

CRRT (CT CRRT )−1CT CR = CRRT (RRT )−1(CT C)−1CT CR = CR = A.
AA† is symmetric because

CRRT (RRT )−1(CT C)−1CT =C(CT C)−1CT =
(

C(CT C)−1CT
)T

=(AA†)T

The columns of C are a basis of C(A). Hence, AA† = C(CT C)−1CT is the
projection matrix for projecting onto C(A).
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