

Robert Weismantel

Week 10: The Gram-Schmidt Process and the pseudoinverse of a matrix

Preparations for the Gram-Schmidt Process

Our task

Construct an orthonormal basis of a given subspace $S \subseteq \mathbb{R}^m$. The subspace is presented by a basis, i.e., vectors a_1, \ldots, a_n such that $S = \text{Span}(a_1, \ldots, a_n)$.

The idea for two vectors

Let a_1 , a_2 be linearly independent and $S = \{a_1x_1 + a_2x_2 \mid x_1, x_2 \in \mathbb{R}\}$: we first normalize a_1 : $q_1 = \frac{a_1}{\|a_1\|}$ $\frac{a_1}{\|a_1\|}$, then subtract from a_2 a multiple of q_1 so that it becomes orthogonal to q_1 , followed by a normalization step:

$$
q_2 = \frac{a_2 - (a_2^{\top} q_1) q_1}{\|a_2 - (a_2^{\top} q_1) q_1\|}.
$$
 Note: $a_2 - (a_2^{\top} q_1) q_1 \neq 0$.

Claim: q_1 , q_2 are orthogonal.

$$
q_1^{\top}q_2 = q_1^{\top} \frac{a_2 - (a_2^{\top}q_1)q_1}{\|a_2 - (a_2^{\top}q_1)q_1\|} = \frac{q_1^{\top}a_2 - (a_2^{\top}q_1)q_1^{\top}q_1}{\|a_2 - (a_2^{\top}q_1)q_1\|} = \frac{0}{\|a_2 - (a_2^{\top}q_1)q_1\|} = 0.
$$

For more vectors:

remove from a vector a_{k+1} the projection of it on the subspace spanned by the *k* vectors before.

Gram-Schmidt Algorithm

Given *n* linearly independent vectors a_1, \ldots, a_n that span a subspace *S*, the Gram-Schmidt process constructs q_1, \ldots, q_n in the following way:

$$
\bullet \ \ q_1=\tfrac{a_1}{\|a_1\|}.
$$

For
$$
k = 2, ..., n
$$
 do
\n• $q'_k = a_k - \sum_{i=1}^{k-1} (a_k^\top q_i) q_i$
\n• $q_k = \frac{q'_k}{\|q'_k\|}$.

Theorem (Correctness of Gram-Schmidt)

*Given n linearly independent vectors a*1,...,*an, the Gram-Schmidt process outputs an orthonormal basis for the span of a*1,...,*an.*

Proof by induction

Let S_k be the subspace spanned by a_1, \ldots, a_k . Then $S = S_n$.

Claim: q_1 ,...,*q_k* are an orthonormal basis for S_k

It is enough to show that $q_1, \ldots, q_k \in S_k$ and are orthonormal. (orthonormality implies linearly independence and *S^k* has dimension *k*)

The steps

1 Base case: $||q_1|| = 1$ and q_1 is a multiple of a_1 and so $q_1 \in S_1$.

² Assume the hypothesis for *i* = 1,...*k* −1:

- Since *a^k* is linearly independent from the other original vectors it is not in S_{k-1} and so q'_{k} ≠ 0. Thus $||q_{k}||$ = 1.
- By construction $a_k \in S_k$ and so $q_k \in S_k.$
- Let 1 ≤ *j* ≤ *k* −1. Since *q*1,...,*qk*−¹ are orthonormal, we have

$$
q_j^{\top}\left(a_k-\sum_{i=1}^{k-1}(a_k^{\top}q_i)q_i\right)=q_j^{\top}a_k-\sum_{i=1}^{k-1}(a_k^{\top}q_i)q_j^{\top}q_i=q_j^{\top}a_k-(a_k^{\top}q_j)=0,
$$

and
$$
q_j^\top q_k = \frac{1}{\|q'_k\|} q_j^\top q'_k = 0.
$$

A first application of the Gram-Schmidt Process

Gram-Schmidt actually provides us with a new matrix factorization.

Definition (QR decomposition)

Let *A* be an $m \times n$ matrix with linearly independent columns. The QR decomposition is given by

$$
A=QR,
$$

where Q is an $m \times n$ matrix with orthonormal columns returned by the Gram Schmidt Algorithm and *R* is an upper triangular matrix given by *R* = *Q*⊤*A*.

It requires us to show that indeed this is a proper definition.

Lemma

The matrix R defined before is upper triangular. Moreover, R is invertible and $QQ^TA = A$

Proof of the lemma

R is upper triangular

- We have that $Q^T Q = I$ and hence, $q_k^T q_i = 0$ for all $i = 1,...k 1$.
- *q*1,...,*qk*−¹ and *a*1,...,*ak*−¹ span subspace *Sk*−1. Hence,

$$
q_k^T a_i = 0
$$
 for all $i = 1, ..., k - 1$.

 \bullet Hence $B = Q^T A$ is upper triangular.

Moreover, $C(Q) = C(A)$

• Since $Q^T Q = I$ we obtain for the projection matrix onto the subspace $C(Q) = C(A)$ the formula $Q(Q^TQ)^{-1}Q^T = QQ^T$ and notice, for every index *i*,

$$
\text{proj}_{S_n}(a_i) = a_i = QQ^T a_i \quad \Longleftrightarrow \quad QR = QQ^T A = A.
$$

• $N(A) = \{0\}$ and since $A = QR$, we must have that $N(R) = \{0\}$. Since *R* is a matrix of size *n* by *n*, we notice that *R* is invertible.

The *QR* decomposition is computationally useful.

$Recall \ \overline{C(A)} = C(Q)$

 $\mathsf{Projection}$ on $C(A)$ can be done with Q , i.e., $\mathsf{proj}_{C(A)}(b) = QQ^\top b.$

The least squares solution min∥*Ax* −*b*∥ 2 :

is the point \hat{x} solving the normal equations

$$
A^{\top} A \hat{x} = A^{\top} b.
$$

 $\mathsf{Furthermore,}\ A^\top A\!=\!(\mathcal{Q}\mathcal{R})^\top(\mathcal{Q}\mathcal{R})\! =\! \mathcal{R}^\top \mathcal{Q}^\top \mathcal{Q}\mathcal{R}\!=\! \mathcal{R}^\top \mathcal{R},$ and so we can write

$$
R^{\top} R \hat{\mathbf{x}} = R^{\top} Q^{\top} b. \tag{1}
$$

Since *R* is invertible, R^{T} is invertible and so we can simplify [\(1\)](#page-6-0) to

$$
R\hat{x} = Q^{\top}b,\tag{2}
$$

which can be solved fast by back-substitution since *R* is triangular.

The Pseudoinverse or Moore–Penrose Inverse

Our next task

construct an analogue to the inverse of a matrix *A* for matrices that have no inverse. This is called the pseudoinverse and we will denote it by *A* † .

The hurdles to overcome

- For some vectors *b* there might not be a vector *x* such that $Ax = b$.
- For some vectors *b* there may be more than one *x* such that *Ax* = *b* and we must pick one.
- **E** Frem if we make such choices, it is not clear that such operation will correspond to multiplying by a matrix *A* † .

Our plan to take the hurdles

- Develop a pseudoinverse for matrices with full column rank.
- Develop a pseudoinverse for matrices with full row rank.
- Write a general matrix as as product of two matrices: one of full column rank and one of full row rank.

The intuition

If the columns of *A* are linearly independent it makes sense to build *A* † such that *A* †*b* is the Least Squares Solution *x*ˆ = (*A* [⊤]*A*) [−]1*A* [⊤]*b* (the vector *x*ˆ such that $A\hat{x}$ is as close as possible to *b*).

Definition (Pseudoinverse for matrices with full column rank)

For $A \in \mathbb{R}^{m \times n}$ with rank $(A) = n$ we define the pseudo-inverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ of A as $\bm{\mathcal{A}}^\dagger = (\bm{\mathcal{A}}^\top \bm{\mathcal{A}})^{-1} \bm{\mathcal{A}}^\top.$

Proposition

- For $A \in \mathbb{R}^{m \times n}$ with rank $(A) = n$, the pseudoinverse A^{\dagger} is a left inverse of *A*, meaning that $A^{\dagger}A = I$.
- Proof. rank $(A) = n$, $A^{\top}A$ is invertible. Hence, $A^{\dagger}A = (A^{\top}A)^{-1}A^{\top}A = I$.

The intuition

If the rows of *A* are linearly independent, then *A ^T* has full column rank and we use the pseudo-inverse for A^T to define a pseudo-inverse of A .

Definition (Pseudoinverse for matrices with full row rank)

 $\mathsf{For}~\mathcal{A}\in\mathbb{R}^{m\times n}$ with $\mathsf{rank}(\mathcal{A})=m$ we define the pseudo-inverse $\mathcal{A}^\dagger\in\mathbb{R}^{n\times m}$ of \mathcal{A} as $\mathcal{A}^\dagger = \mathcal{A}^\top (\mathcal{A}\mathcal{A}^\top)^{-1}.$

Proposition

- For $A \in \mathbb{R}^{m \times n}$ with rank $(A) = m$, the pseudoinverse A^{\dagger} is a right inverse of *A*, meaning that $AA^{\dagger} = I$.
- Proof. rank $(A) = m$, AA^{\top} is invertible. Hence, $AA^{\dagger} = AA^{\top} (AA^{\top})^{-1} = I$.

What do we achieve with the pseudo-inverse here?

Since *A* is full row rank, for all $b \in \mathbb{R}^m$, there exists $x \in \mathbb{R}^n$ such that $Ax = b$. There are many such vectors. Choose one with smallest norm.

$$
\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.} \quad Ax = b.}} \|x\|^2 \tag{3}
$$

Lemma

For a full row rank matrix A, the (unique) solution to [\(3\)](#page-10-0) *is given by the vector* $\hat{x}\in C(A^{\top})$ *that satisfies the constraint* $A\hat{x}=b.$

Claim: $\hat{x} = A^{\dagger}b$ is the solution to [\(3\)](#page-10-0).

Proof follows from the lemma by noting that

$$
A\hat{x} = AA^{\dagger}b = AA^{\top}(AA^{\top})^{-1}b = b
$$
 and hence, $A\hat{x} = b$.

$\hat{\mathsf{x}} \in C(A^{\top})$

$$
\hat{X} = A^{\dagger} b = A^{\top} \left((A A^{\top})^{-1} b \right).
$$

A solution to [\(3\)](#page-10-0) is equivalent to

Let x_1 be a vector such that $Ax_1 = b$. The set of solutions to $Ax = b$ are ${x_1 + y \mid y \in N(A)}$. Minimize $||x_1 + y||$ among all vectors $y \in N(A)$.

x_1 – proj $_{N(A)}(x_1)$ is the solution to [\(3\)](#page-10-0).

•
$$
x_1 = (x_1 - \text{proj}_{N(A)}(x_1)) + \text{proj}_{N(A)}(x_1)
$$
. Since $y \in N(A)$ we have that
\n
$$
(x_1 - \text{proj}_{N(A)}(x_1)) \perp (y + \text{proj}_{N(A)}(x_1))
$$
 and so

$$
||x_1 + y||^2 = \left\| (x_1 - \text{proj}_{N(A)}(x_1)) + \text{proj}_{N(A)}(x_1) + y \right\|^2
$$

= $\left\| x_1 - \text{proj}_{N(A)}(x_1) \right\|^2 + \left\| \text{proj}_{N(A)}(x_1) + y \right\|^2 \ge \left\| x_1 - \text{proj}_{N(A)}(x_1) \right\|^2.$

Pseudoinverse for matrices in general

Finally, $x_1 - \text{proj}_{N(A)}(x_1)$ is orthogonal to $N(A)$.

Since $N(A)^{\perp}=C(A^{\top}),$ we observe that $x_1-\text{proj}_{N(A)}(x_1)\in C(A^{\top}).$

The idea based on the CR decomposition:

The CR decomposition writes $A = \overline{C}R$ where $C \in \mathbb{R}^{m \times r}$ has the first *r* linearly independent columns of *A* and $R \in \mathbb{R}^{r \times n}$ is upper triangular. Note that *C* is full column rank and *R* is full row rank.

Definition (Pseudoinverse for all matrices)

For $A \in \mathbb{R}^{m \times n}$, with rank $(A) = r$, with CR decomposition $A = CR$ we define the pseudoinverse *A* † as

$$
A^{\dagger} = B^{\dagger} C^{\dagger},
$$

$$
A^{\dagger} = R^{\top} \left(R R^{\top}\right)^{-1} \left(C^{\top} C\right)^{-1} C^{\top} = R^{\top} \left(C^{\top} C R R^{\top}\right)^{-1} C^{\top} = R^{\top} \left(C^{\top} A R^{\top}\right)^{-1} C^{\top}.
$$

What does a pseudoinverse for matrices give us?

Lemma

For $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^n$, the (unique) solution to $(*)$ is given by $\hat{x} = A^{\dagger}b$.

$$
(*) \qquad \min\left\{ \|x\|^2 \text{ s.t. } x \in \mathbb{R}^n, A^\top Ax = A^\top b \right\}
$$

Proof.

- Let *r* be the rank of *A* and $A = CR$ with $C \in \mathbb{R}^{m \times r}$ and $R \in \mathbb{R}^{r \times n}$.
- T hen $\hat{x} = \mathsf{A}^\dagger \mathsf{b} = \mathsf{A}^\top \left(\mathsf{C}^\top \mathsf{A} \mathsf{A}^\top\right)^{-1} \mathsf{C}^\top \mathsf{b}.$ Thus,

$$
A^{\top} A \hat{x} = A^{\top} A R^{\top} (C^{\top} A R^{\top})^{-1} C^{\top} b
$$

= $R^{\top} C^{\top} A R^{\top} (C^{\top} A R^{\top})^{-1} C^{\top} b = R^{\top} C^{\top} b = A^{\top} b.$

- \bullet Hence we have verified that \hat{x} satisfies the normal equations.
- $C(A^T A) = C(A^T) = C(R^T)$ and since $\hat{x} = R^T (C^T A R^T)^{-1} C^T b$, we have verified that *x*ˆ ∈ *C*(*A* [⊤]*A*). The result follows with the previous lemma.

A few properties of the pseudo-inverse

Theorem (Let $A \in \mathbb{R}^{m \times n}$.)

- **1** $AA^{\dagger}A = A$ and $A^{\dagger}AA^{\dagger} = A^{\dagger}$.
- ² *AA*† *is symmetric. It is the projection matrix for projection on C*(*A*)*,*
- ³ *A* †*A is symmetric. It is the projection matrix for projection on C*(*A* [⊤])*.*

 \mathbf{A}^{\top} \mathbf{A}^{\top} \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} \mathbf{A}^{\top} \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} \mathbf{A}^{\dagger}

Proof.

- Let us plug in $A^\dagger = R^\top \left(C^\top A R^\top \right)^{-1} C^\top$ to calculate $A A^\dagger A =$ $CRR^{\mathsf{T}}(C^{\mathsf{T}}CRR^{\mathsf{T}})^{-1}C^{\mathsf{T}}CR = CRR^{\mathsf{T}}(RR^{\mathsf{T}})^{-1}(C^{\mathsf{T}}C)^{-1}C^{\mathsf{T}}CR = CR = A.$
- *AA*† is symmetric because

$$
CRR^{T}(RR^{T})^{-1}(C^{T}C)^{-1}C^{T}=C(C^{T}C)^{-1}C^{T}=\left(C(C^{T}C)^{-1}C^{T}\right)^{T}=(AA^{\dagger})^{T}
$$

The columns of C are a basis of $C(A)$. Hence, $A A^\dagger = C(C^{\mathsf{T}} C)^{-1} C^{\mathsf{T}}$ is the projection matrix for projecting onto *C*(*A*).