

Robert Weismantel

Week 13: Repeated eigenvalues, symmetric matrices and the spectral theorem

Summary: Let $A \in \mathbb{R}^{n \times n}$

- If (λ, ν) is an eigenvalue-eigenvector-pair of A, then (λ

 , ν

) is an eigenvalue-eigenvector-pair of A.
- The eigenvalues of *A* and *A*^{*T*} are the same, not so the corresponding eigenvectors.
- If A is invertible and (λ, v) is an eigenvalue-eigenvector-pair of A, then $(1/\lambda, v)$ is an eigenvalue-eigenvector-pair of A^{-1} .
- The eigenvalues of *A*+*B* are not the sum of eigenvalues of *A* and *B*.
- The eigenvalues of AB are not the product of eigenvalues of A and B.
- Gaussian Elimination doesn't preserve eigenvalues and eigenvectors.
- Let $Q \in \mathbb{R}^{n \times n}$ be an orthogonal matrix., i.e., $Q^T Q = I$. If $\lambda \in \mathbb{C}$ is an eigenvalue of Q, then $|\lambda| = 1$.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ with n distinct real eigenvalues. There is a basis of \mathbb{R}^n , v_1, \ldots, v_n , made up of eigenvectors of A.

Robert Weismantel

Repeated eigenvalues can pose an obstacle to building a basis.

We have shown that if $A \in \mathbb{R}^{n \times n}$ has *n* distinct real eigenvalues, then there is a basis of \mathbb{R}^n made up of eigenvectors of *A*. But what if not?

Example

• $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ does not have two linearly independent eigenvectors. det $(A - \lambda I) = \lambda^2$ which means that $\lambda = 0$ is the only eigenvalue and has algebraic multiplicity 2. However, N(A - 0I) = N(A) only has dimension 1, so there is only one linearly independent eigenvector.

• $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ has two linearly independent eigenvectors. $det(A - \lambda I) = \lambda^2$ which means that $\lambda = 0$ is the only eigenvalue and has algebraic multiplicity 2. N(A - 0I) = N(A) has dim. 2.

Definition

Let $A \in \mathbb{R}^{n \times n}$. If one can build a basis of \mathbb{R}^n with eigenvectors of A we say that A has a complete set of real eigenvectors.

When do we have a complete set of real eigenvectors?

- A matrix with *n* distinct real eigenvalues always has a complete set of real eigenvectors.
- For D∈ ℝ^{n×n} a diagonal matrix, the eigenvalues of D are the diagonal entries of D. The canonical basis e₁,..., e_n is a set of eigenvectors of D.
- When there is an eigenvalue λ with algebraic multiplicity larger than 1, it can be that $N(A \lambda I)$ is of large enough dimension to find enough linearly independent eigenvectors.

Definition

Given a matrix $A \in \mathbb{R}^{n \times n}$ and an eigenvalue λ of A we call the dimension of $N(A - \lambda I)$ the geometric multiplicity of λ .

Observation

If the geometric multiplicities equal the algebraic multiplicites of all eigenvalues, then such a matrix has a complete set of eigenvectors. (Note the eigenvectors corresponding to distinct eigenvalues are l.i.)

Proposition

Let *P* be the projection matrix on the subspace $U \subseteq \mathbb{R}^n$. Then *P* has two eigenvalues, 0 and 1, and a complete set of real eigenvectors.

Proof.

Let *m* be the dimension of *U*. Let u_1, \ldots, u_m be an orthonormal basis of *U*, and w_1, \ldots, w_{n-m} an orthonormal basis of U^{\perp} .

 $Pu_k = 1u_k$ for $1 \le k \le m$ and $Pw_k = 0w_k$ for $1 \le k \le n - m$.

Hence, all n vectors are eigenvectors of P (with eigenvalues 1 or 0).

The idea:

- Let $A \in \mathbb{R}^{n \times n}$ and assume that A has a complete set of real eigenvectors. For $i \in \{1, ..., n\}$ let λ_i be the eigenvalue associated with eigenvector v_i .
- This fact allows us to write $x \in \mathbb{R}^n$ as

$$x = \sum_{i=1}^{n} \alpha_i v_i \Rightarrow Ax = \sum_{i=1}^{n} \lambda_i \alpha_i v_i$$
, i.e.,

 The linear transformation corresponding to writing an x in the basis V allows us to transform A to a diagonal matrix.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ with a complete set of eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$ associated with eigenvalues $\lambda_1, \ldots, \lambda_n$. Let V be the matrix with columns v_i . Then, $A = V \wedge V^{-1}$, where \wedge is a diagonal matrix with $\Lambda_{ii} = \lambda_i$ ($\Lambda_{ij} = 0$ for $i \neq j$).

The proof

 v_1, \ldots, v_n is a basis, hence V is invertible and it remains to prove

 $V^{-1}AV = \Lambda.$

For $1 \le j \le n$, the *j*-th column of the matrix $V^{-1}AV$ is given by

$$\left(V^{-1}AV\right)_{,j} := \left(V^{-1}AV\right)e_j = V^{-1}Av_j = V^{-1}\lambda_jv_j = \lambda_jV^{-1}v_j = \lambda_je_j,$$

since $V^{-1}v_j = V^{-1}Ve_j = e_j$. Note that $\lambda_j e_j$ is the *j*-th column of Λ . Hence, we have that

$$V^{-1}AV = \Lambda.$$

Definition (Diagonalizable Matrix)

A matrix $A \in \mathbb{R}^{n \times n}$ is called diagonalizable if there exists an invertible matrix V and a diagonal matrix Λ such that

$$V^{-1}AV = \Lambda.$$

It allows us to perform a change of basis

using eigenvectors so that the matrix A becomes diagonalizable.

The idea more general

Let u_1, \ldots, u_n be a basis for \mathbb{R}^n and v_1, \ldots, v_m a basis of \mathbb{R}^m . Consider the transformation *L* that maps $x = \sum_{j=1}^n \alpha_j u_j$ to $L(x) = Ax = \sum_{j=1}^n \beta_j v_j$. We want to compute the matrix *B* that takes

$$\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \text{ to } \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_m \end{bmatrix}, \text{ i.e.}, B\alpha = \beta.$$

Let $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ have columns u_1, \ldots, u_n and v_1, \ldots, v_m . Then, $x = U\alpha$ and $L(x) = V\beta$ and so $\beta = V^{-1}AU\alpha$ and hence,

$$B=V^{-1}AU.$$

In summary,

 $L: \mathbb{R}^n \to \mathbb{R}^m$,

U =

L(x) = Ax.

$$L\left(\sum_{j=1}^{n} x_{j} e_{j}\right) = \sum_{i=1}^{n} (Ax)_{i} e_{i} \qquad x = \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$
(1)
$$L\left(\sum_{j=1}^{n} \alpha_{j} u_{j}\right) = \sum_{i=1}^{n} (B\alpha)_{i} v_{i} \qquad \alpha = \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix},$$

$$B = V^{-1} A U \in \mathbb{R}^{m \times n}$$

$$\begin{bmatrix} u_{1} & \cdots & u_{n} \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad V = \begin{bmatrix} v_{1} & \cdots & v_{m} \end{bmatrix} \in \mathbb{R}^{m \times m}$$

Specifically if A is square and diagonalizable

U = V can be chosen and *B* becomes a diagonal matrix!

Definition (Similar Matrices)

We say that $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ are similar matrices if there exists an invertible matrix *S* such that $B = S^{-1}AS$.

Proposition

Similar matrices have the same eigenvalues.

Proof.

A and B are similiar, i.e., $B = S^{-1}AS$. Let λ be an eigenvalue of A with associated eigenvector v. Then $Av = \lambda v$. Define $w = S^{-1}v$. We obtain

$$Bw = S^{-1}ASw = S^{-1}ASS^{-1}v = S^{-1}Av = \lambda S^{-1}v = \lambda w.$$

Conversely, let λ be an eigenvalue of *B* with associated eigenvector *w*. Then $Bw = \lambda w$. Define v = Sw. We obtain

$$Av = SBS^{-1}v = SBS^{-1}Sw = SBw = \lambda Sw = \lambda v.$$

Our next target: Symmetric matrices

Target

Here we consider symmetric matrices $A \in \mathbb{R}^{n \times n}$, $A^T = A$. Our target is to show that such a matrix always has a complete set of eigenvectors.

Proposition

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and λ an eigenvalue of A, then $\lambda \in \mathbb{R}$.

Proof

Let $v \in \mathbb{C}^n$ be an eigenvector associated with the eigenvalue $\lambda \in \mathbb{C}$. We have $Av = \lambda v$. Recall that, for a matrix (or vector) M, its Hermitian conjugate is given by $M^* = \overline{M}^{\top}$. Since A is real symmetric we have $A^* = A$. Thus

$$\overline{\lambda} \|v\|^2 = \overline{\lambda} v^* v = (\lambda v)^* v = (Av)^* v = v^* A^* v = v^* Av = v^* \lambda v = \lambda \|v\|^2.$$

Since $v \neq 0$, then $||v|| \neq 0$ and so $\lambda = \overline{\lambda}$. This implies that $\lambda \in \mathbb{R}$.

Proposition

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and $\lambda_1 \neq \lambda_2$ two distinct eigenvalues of A with corresponding eigenvectors v_1 , v_2 . Then v_1 and v_2 are orthogonal.

Proof.

 $v_1, v_2 \neq 0$ and hence,

$$\lambda_1 v_1^\top v_2 = (Av_1)^\top v_2 = v_1^\top A^\top v_2 = v_1^\top A v_2 = v_1^\top (Av_2) = \lambda_2 v_1^\top v_2,$$

since $\lambda_1 \neq \lambda_2$ we must have that $v_1^\top v_2 = 0$.

Theorem (Spectral Theorem)

Every symmetric matrix $A \in \mathbb{R}^{n \times n}$ has n real eigenvalues and an orthonormal basis made of eigenvectors of A.

First a few consequences of the spectral theorem

Corollary

For any symmetric matrix $A \in \mathbb{R}^{n \times n}$ there exists an orthogonal matrix $V \in \mathbb{R}^{n \times n}$ (whose columns are eigenvectors of A) such that

 $A = V \Lambda V^{\top},$

where $\Lambda \in \mathbb{R}^{n \times n}$ is a diagonal matrix with the eigenvalues of A in its diagonal (and $V^{\top} V = I$).

Let *A* be a real $n \times n$ symmetric matrix

Let v_1, \ldots, v_n be an orthonormal basis of eigenvectors of A and $\lambda_1, \ldots, \lambda_n$ the associated eigenvalues. Then $A = \sum_{k=1}^n \lambda_i v_i v_i^\top$

Corollary

The rank of a real symmetric matrix A is the number of non-zero eigenvalues (counting repetitions).

Robert Weismantel

The point of departure

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. We will prove the following by induction, which for k = n implies the theorem we want to show:

- For any k ∈ {1,...,k} there are k orthogonal eigenvectors of A corresponding to k real eigenvalues of A.
- If k = 1, this statement is true.

The inductive step

Assume the statement is true for k, i.e., A has k (with $1 \le k < n$) orthonormal eigenvectors. Then we can build an extra one, orthogonal to the others.

- *v*₁,...,*v_k* denote *k* orthonormal eigenvectors of *A* and λ₁,...,λ_k the respective eigenvalues.
- Let u_{k+1},..., u_n be an orthonormal basis of the orthogonal complement of the span of v₁,..., v_k.
- Let V_k be the $n \times n$ matrix whose *i*-th column is v_i if $i \le k$ and u_i if i > k. V_k is an orthogonal matrix.

Proof of the spectral theorem II: Define

$$B = V^{\top} A V = \begin{bmatrix} - & v_{1}^{\top} & - \\ \vdots & \\ - & u_{k+1}^{\top} & - \\ \vdots & \\ - & u_{n}^{\top} & - \end{bmatrix} \begin{bmatrix} | & | & | & | & | & | \\ A v_{1} & \cdots & A v_{k} & A u_{k+1} & \cdots & A u_{n} \\ | & | & | & | & | \end{bmatrix}$$
$$= \begin{bmatrix} - & v_{1}^{\top} & - \\ \vdots & \\ - & u_{k+1}^{\top} & - \\ \vdots & \\ - & u_{n}^{\top} & - \end{bmatrix} \begin{bmatrix} | & | & | & | & | \\ \lambda v_{1} & \cdots & \lambda v_{k} & A u_{k+1} & \cdots & A u_{n} \\ | & | & | & | & | \end{bmatrix}$$
$$= \begin{bmatrix} \Lambda_{k} & 0_{k \times (n-k)} \\ 0_{(n-k) \times k} & C \end{bmatrix},$$

 Λ_k is diagonal with entries $\lambda_1, \ldots, \lambda_k$, *C* is a $(n-k) \times (n-k)$ symmetric matrix.

Robert Weismantel

Proof of the spectral theorem III

• Since *C* is a $(n-k) \times (n-k)$ symmetric matrix, it has a real eigenvalue λ_{k+1} and a real eigenvector $y \in \mathbb{R}^{n-k}$.

• Let $w \in \mathbb{R}^n$,

$$w_i = \begin{cases} 0 & \text{if } i \leq k \\ y_{i-k} & \text{if } i > k. \end{cases}$$

•

$$Bw = \begin{bmatrix} \Lambda_k & 0_{k \times (n-k)} \\ 0_{(n-k) \times k} & C \end{bmatrix} \begin{bmatrix} 0_{k \times 1} \\ y \end{bmatrix} = \begin{bmatrix} 0_{k \times 1} \\ Cy \end{bmatrix} = \begin{bmatrix} 0_{k \times 1} \\ \lambda_{k+1}y \end{bmatrix} = \lambda_{k+1}w.$$

• Let $v_{k+1} := Vw$. V is orthogonal and $A = VBV^{\top}$. Thus,

$$Av_{k+1} = VBV^{\top}v_{k+1} = VBw = V\lambda_{k+1}w = \lambda_{k+1}v_{k+1},$$

so v_{k+1} is an eigenvector of *A*.

- Show that v_{k+1} is orthogonal to v_1, \ldots, v_k !
- The inner products $v_i^{\top} v_{k+1}$ for $i \le k$ appear in the first k entries of $V^{\top} v_{k+1} = w$ and w has its first k coordinates equal to 0.
- By normalizing the vector we can have it attain unit norm.