

Robert Weismantel

Week 14:From symmetric matrices to the singular value theorem

The spectral theorem: Let A be a real $n \times n$ symmetric matrix

Let v_1, \ldots, v_n be an orthonormal basis of eigenvectors of A and $\lambda_1, \ldots, \lambda_n$ the associated eigenvalues. Then $A = \sum_{i=1}^n \lambda_i v_i v_i^\top$

Proposition [Rayleigh Quotient]

Let $A \in \mathbb{R}^{n \times n}$ be symmetric. The Rayleigh Quotient, defined for $x \in \mathbb{R}^n \setminus \{0\}$, as

For
$$x \in \mathbb{R}^n \setminus \{0\}$$
, let $R(x) = rac{x^\top A x}{x^\top x}$

R attains its maximum at $R(v_{max}) = \lambda_{max}$ and its minimum at $R(v_{min}) = \lambda_{min}$ where λ_{max} and λ_{min} are the largest and smallest eigenvalues of *A* and v_{max} , v_{min} their associated eigenvectors.

Proof.

Since $R(v_{max}) = \lambda_{max}$ and $R(v_{min}) = \lambda_{min}$ it is enough to show

$$\lambda_{\min} \leq R(x) \leq \lambda_{\max}$$
 for all $x \in \mathbb{R}^n \setminus \{0\}$.

Robert Weismantel

The proof continued

From the spectral theorem

For
$$x \in \mathbb{R}^n \setminus \{0\}$$
, $R(x) = \frac{x^\top \left(\sum_{i=1}^n \lambda_i v_i v_i^\top\right) x}{\|x\|^2} = \frac{\sum_{i=1}^n \lambda_i \left(x^\top v_i\right)^2}{\|x\|^2}$,

where v_1, \ldots, v_n form an orthonormal basis of eigenvectors of *A* and $\lambda_1, \ldots, \lambda_n$ are the associated eigenvalues.

٠

For all
$$1 \le i \le n$$
 $\lambda_{\min} \left(x^\top v_i \right)^2 \le \lambda_i \left(x^\top v_i \right)^2 \le \lambda_{\max} \left(x^\top v_i \right)^2$.

Collecting all these inequalities we get

$$\lambda_{\min} \frac{\sum_{i=1}^{n} \left(x^{\top} \boldsymbol{v}_{i}\right)^{2}}{\|\boldsymbol{x}\|^{2}} \leq \frac{\sum_{i=1}^{n} \lambda_{i} \left(x^{\top} \boldsymbol{v}_{i}\right)^{2}}{\|\boldsymbol{x}\|^{2}} \leq \lambda_{\max} \frac{\sum_{i=1}^{n} \left(x^{\top} \boldsymbol{v}_{i}\right)^{2}}{\|\boldsymbol{x}\|^{2}}.$$

• The v_i 's are orthonormal, the matrix V with the v_i 's as columns is orthogonal and $\sum_{i=1}^{n} (x^{\top} v_i)^2 = ||Vx||^2 = ||x||^2$ and so $\frac{\sum_{i=1}^{n} (x^{\top} v_i)^2}{||x||^2} = 1$.

Definition (Positive Definite and Positive Semidefinite matrix)

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is said to be Positive Semidefinite / Positive Definite (PSD / PD) if all its eigenvalues are non-negative / positive.

Proposition derived from the Rayleigh Quotient

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is PSD if and only if $x^{\top}Ax \ge 0$ for all $x \in \mathbb{R}^{n}$. A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is PD if and only if $x^{\top}Ax > 0$ for all $x \in \mathbb{R}^{n} \setminus \{0\}$.

Lemma

If $A, B \in \mathbb{R}^{n \times n}$ are symmetric and PSD, then A+B is PSD.

Proof.

If $x^T A x \ge 0$ and $x^T B x \ge 0$ for all $x \in \mathbb{R}^n$, then

$$x^{\mathsf{T}}(\mathsf{A}+\mathsf{B})x = x^{\mathsf{T}}(\mathsf{A}x+\mathsf{B}x) = x^{\mathsf{T}}\mathsf{A}x + x^{\mathsf{T}}\mathsf{B}x \ge 0.$$

A key-observation: Gram matrices are PSD.

Definition (Gram Matrix)

Given *n* vectors, $v_1, ..., v_n$ in \mathbb{R}^m , let $V \in \mathbb{R}^{m \times n}$ be the matrix with columns v_i . The Gram Matrix of *V* is defined to be the $n \times n$ matrix of inner products

$$G_{ij} = \mathbf{v}_i^\top \mathbf{v}_j.$$

In matrix notation, $G = V^{\top} V$.

Proposition

Let $A \in \mathbb{R}^{m \times n}$. The non-zero eigenvalues of $A^{\top}A \in \mathbb{R}^{n \times n}$ are the same as the ones of $AA^{\top} \in \mathbb{R}^{m \times m}$. Both matrices are also symmetric and PSD.

Proof.

 $A^{\top}A$ and AA^{\top} are symmetric. We have $x^{\top}A^{\top}Ax = ||Ax||^2 \ge 0$ for all x which implies $A^{\top}A$ is PSD. The same argument applies to AA^{\top} .

Proof continued

It remains to show that the non-zero eigenvalues of $A^{\top}A \in \mathbb{R}^{n \times n}$ are the same as the ones of $AA^{\top} \in \mathbb{R}^{m \times m}$.

• Let r be the rank of A. We know

$$\operatorname{rank}(A) = \operatorname{rank}(A^{\top}) = \operatorname{rank}(A^{\top}A) = \operatorname{rank}(AA^{\top}).$$

- AA[⊤] and A[⊤]A have a complete set of real eigenvalues and orthogonal eigenvectors.
- Let λ₁,...,λ_r be the r non-zero eigenvalues of A^TA and v₁..., v_r the corresponding eigenvectors. Let μ₁,...,μ_r be the r non-zero eigenvalues of AA^T and w₁...,w_r be the corresponding eigenvectors.
- $A^{\top}Av_k = \lambda_k v_k$. Hence, $AA^{\top}Av_k = \lambda_k Av_k$ and so λ_k is a nonzero eigenvalue of AA^{\top} with eigenvector Av_k .
- (A^TA)A^Tw_i = A^T(AA^Tw_i) = μ_iA^Tw_i for all *i*. This shows that μ₁,..., μ_r are non-zero eigenvalues of A^TA with corresponding eigenvectors A^Tw₁..., A^Tw_r.

• Hence,
$$\{\mu_1, \ldots, \mu_r\} = \{\lambda_1, \ldots, \lambda_r\}.$$

What else do we get for PSD matrices?

Proposition [Cholesky decomposition]

Every symmetric positive semidefinite matrix *M* is a Gram matrix of an upper triangular matrix *C*. $M = C^{\top}C$ is known as the Cholesky Decomposition.

Proof.

- There is a decomposition $M = V \wedge V^{\top}$ with Λ a diagonal matrix with the eigenvalues of M in the diagonal. Since M is PSD, $\Lambda_{ii} \ge 0$.
- Define $\Lambda^{1/2}$ by taking the square root of each diagonal entry of Λ . Then $M = (V\Lambda^{1/2}) (V\Lambda^{1/2})^{\top}$.
- To make the matrices upper triangular use the QR decomposition: $(V\Lambda^{1/2})^{\top} = QR$ with Q such that $Q^{\top}Q = I$ and R upper triangular.

$$M = \left(V\Lambda^{1/2}\right) \left(V\Lambda^{1/2}\right)^{\top} = \left(QR\right)^{\top} \left(QR\right) = R^{\top}Q^{\top}QR = R^{\top}R.$$

Taking C = R establishes the result.

How to establish a decomposition of the flavour of the spectral theorem for general matrices?

Definition (SVD — Singular Value Decomposition)

Let A ∈ ℝ^{m×n}. A singular value decomposition of A consists of orthogonal matrices U ∈ ℝ^{m×m} and V ∈ ℝ^{n×n} such that

$$A = U \Sigma V^{\top}, \tag{1}$$

where $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix, $U^{\top}U = I$ and $V^{\top}V = I$. The columns of U(V) are the left (right) singular vectors of A. The diagonal elements of Σ , $\sigma_i = \Sigma_{ii}$ are called the singular values of A and are ordered as

$$\sigma_1 \geq \cdots \geq \sigma_{\min\{m,n\}} \geq 0.$$

If A has rank r we can write the SVD in compact form A = U_rΣ_rV_r^T, where U_r ∈ ℝ^{m×r} contains the first r left singular vectors, V_r ∈ ℝ^{n×r} contains the first r right singular vectors and Σ_r ∈ ℝ^{r×r} is a diagonal matrix with the first r singular values.

Suppose $A \in \mathbb{R}^{m \times n}$ and $A = U \Sigma V^{\top}$ is its SVD.

$$AA^{\top} = U\Sigma V^{\top} V\Sigma^{\top} U^{\top} = U\left(\Sigma\Sigma^{\top}\right) U^{\top}.$$

Hence, the left singular vectors of *A* are the eigenvectors of AA^{\top} . The singular values of *A* are the square-root of the eigenvalues of AA^{\top} (note that $\Sigma\Sigma^{\top} \in \mathbb{R}^{m \times m}$ is diagonal). If m > n, *A* has *n* singular values and AA^{\top} has *m* eigenvalues (which is larger than *n*), but the "missing" ones are 0.

$$A^{ op}A = V\left(\Sigma^{ op}\Sigma
ight)V^{ op}$$

Hence, the right singular vectors of *A* are the eigenvectors of $A^{\top}A$ and the singular values of *A* are the square-root of the eigenvalues of $A^{\top}A$ (note that $\Sigma^{\top}\Sigma$ is $n \times n$ diagonal). If n > m, *A* has *m* singular values and $A^{\top}A$ has *n* eigenvalues (which is larger than *m*), but the "missing" ones are 0.

To wrap up the previous slide

It gives us an idea how to construct a SVD. We will use the spectral theorem applied to the symmetric matrices $A^{T}A$ and AA^{T} . The singular values and vectors of *A* are in relation with eigenvalues and eigenvectors of these matrices!

Theorem (The SVD Theorem)

Every matrix $A \in \mathbb{R}^{m \times n}$ has an SVD decomposition of the form (1). In other words:

Every linear transformation is diagonal when viewed in the bases of the singular vectors.

Notes on the proof

Let $A \in \mathbb{R}^{m \times n}$ of rank *r*. We build a compact SVD $A = U_r \Sigma_r V_r^{\top}$. From this one gets an SVD as in (1) by adding singular values that are zero and extending singular vectors in both U_r and V_r to orthonormal bases.

The proof I

The first steps

• From the spectral theorem *AA*[⊤] has a complete set of orthonormal eigenvectors and can be written as

$$AA^{\top} = U\Lambda U^{\top}, \qquad (2)$$

where $U \in \mathbb{R}^{m \times m}$ is orthogonal and Λ is diagonal.

Let us write (2) by ordering the diagonal entries of Λ in decreasing order.
 (2) can be written in compact form, by keeping only the *r* non-zero eigenvalues and eigenvectors,

$$AA^{\top} = U_r \Lambda_r U_r^{\top}$$

for $U_r \in \mathbb{R}^{m \times r}$ such that $U_r^\top U_r = I$ and Λ_r is $r \times r$ diagonal with the non-zero eigenvalues of AA^\top .

 The eigenvalues of AA[⊤] are non-negative and so Λ_r has positive entries on the diagonal. Let Σ_r ∈ ℝ^{r×r} be the diagonal matrix with entries σ_i := (Σ_r)_{ii} = √Λ_{ii}. Show that with $V_r := A^{\top} U_r \Sigma_r^{-1}$ we obtain a compact SVD.

•
$$V_r^{\top} V_r = I$$
. Recall that $AA^{\top} = U_r \Lambda_r U_r^{\top}$:

$$V_r^{\top} V_r = \left(A^{\top} U_r \Sigma_r^{-1} \right)^{\top} A^{\top} U_r \Sigma_r^{-1} = \Sigma_r^{-1} U_r^{\top} A A^{\top} U_r \Sigma_r^{-1}$$

= $\Sigma_r^{-1} U_r^{\top} U_r \Lambda_r U_r^{\top} U_r \Sigma_r^{-1} = \Sigma_r^{-1} \Lambda_r \Sigma_r^{-1} = I$

2 $A = U_r \Sigma_r V_r^{\top}$. Note that

$$U_r \Sigma_r V_r^{\top} = U_r \Sigma_r \left(A^{\top} U_r \Sigma_r^{-1} \right)^{\top} = U_r U_r^{\top} A_r$$

Let us verify that $A = U_r U_r^T A$ by showing $Ax = U_r U_r^T Ax$ for all $x \in \mathbb{R}^n$.

- Let $x \in N(A)$. Then $Ax = 0 = U_r U_r^T x$ Let $x \in C(A^T)$. It follows that $x = A^T y$ for $y \in \mathbb{R}^m$ and hence,

$$\begin{array}{rcl} Ax &=& AA^T y = U_r \Lambda_r U_r^T y = U_r I \Lambda_r U_r^T y \\ &=& U_r U_r^T U_r \Lambda_r U_r^T y = U_r U_r^T AA^T y = U_r U_r^T Ax. \end{array}$$

Theorem.

A rank-*r* matrix is a sum of *r* rank-1 matrices. Let $A \in \mathbb{R}^{m \times n}$ be a matrix of rank *r*. Let $\sigma_1, \ldots, \sigma_r$ be the non-zero singular values of *A* with left and right vectors $u_1, \ldots, u_r, v_1, \ldots, v_r$, respectively. Then

$$\mathsf{A} = \sum_{k=1}^{r} \sigma_k u_k v_k^\top. \tag{3}$$

Final remark

- The SVD is a powerful tool. Many results presented in this course become significantly simpler with the SVD.
- For instance, if A is invertible and A has SVD $A = U\Sigma V^{\top}$, then A^{-1} has SVD $A^{-1} = V\Sigma^{-1}U^{\top}$.
- Similarly, one can define the Moore-Penrose Pseudoinverse by using the SVD.