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Week 14:From symmetric matrices to the singular
value theorem



The point of departure:

The spectral theorem: Let A be a real n×n symmetric matrix
Let v1, . . . ,vn be an orthonormal basis of eigenvectors of A and λ1, . . . ,λn the
associated eigenvalues. Then A = ∑

n
i=1 λiviv⊤

i

Proposition [Rayleigh Quotient]
Let A ∈ Rn×n be symmetric. The Rayleigh Quotient, defined for x ∈ Rn \{0},
as

For x ∈ Rn \{0}, let R(x) =
x⊤Ax
x⊤x

.

R attains its maximum at R(vmax) = λmax and its minimum at R(vmin) = λmin

where λmax and λmin are the largest and smallest eigenvalues of A and vmax,
vmin their associated eigenvectors.

Proof.
Since R(vmax) = λmax and R(vmin) = λmin it is enough to show

λmin ≤ R(x)≤ λmax for all x ∈ Rn \{0}.
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The proof continued

From the spectral theorem

For x ∈ Rn \{0}, R(x) =
x⊤ (

∑
n
i=1 λiviv⊤

i
)

x
∥x∥2 =

∑
n
i=1 λi

(
x⊤vi

)2

∥x∥2 ,

where v1, . . . ,vn form an orthonormal basis of eigenvectors of A and
λ1, . . . ,λn are the associated eigenvalues.

For all 1 ≤ i ≤ n λmin

(
x⊤vi

)2
≤ λi

(
x⊤vi

)2
≤ λmax

(
x⊤vi

)2
.

Collecting all these inequalities we get

λmin
∑

n
i=1

(
x⊤vi

)2

∥x∥2 ≤ ∑
n
i=1 λi

(
x⊤vi

)2

∥x∥2 ≤ λmax
∑

n
i=1

(
x⊤vi

)2

∥x∥2 .

The vi ’s are orthonormal, the matrix V with the vi ’s as columns is

orthogonal and ∑
n
i=1

(
x⊤vi

)2
= ∥Vx∥2 = ∥x∥2 and so ∑

n
i=1(x⊤vi)

2

∥x∥2 = 1.
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Positive definite matrices

Definition (Positive Definite and Positive Semidefinite matrix)
A symmetric matrix A ∈ Rn×n is said to be Positive Semidefinite / Positive
Definite (PSD / PD) if all its eigenvalues are non-negative / positive.

Proposition derived from the Rayleigh Quotient
A symmetric matrix A ∈ Rn×n is PSD if and only if x⊤Ax ≥ 0 for all x ∈ Rn.
A symmetric matrix A ∈ Rn×n is PD if and only if x⊤Ax > 0 for all x ∈ Rn \{0}.

Lemma
If A,B ∈ Rn×n are symmetric and PSD, then A+B is PSD.

Proof.
If xT Ax ≥ 0 and xT Bx ≥ 0 for all x ∈ Rn, then

xT (A+B)x = xT (Ax +Bx) = xT Ax +xT Bx ≥ 0.
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A key-observation: Gram matrices are PSD.

Definition (Gram Matrix)
Given n vectors, v1, . . . ,vn in Rm, let V ∈ Rm×n be the matrix with columns vi .
The Gram Matrix of V is defined to be the n×n matrix of inner products

Gij = v⊤
i vj .

In matrix notation, G = V⊤V .

Proposition
Let A ∈ Rm×n. The non-zero eigenvalues of A⊤A ∈ Rn×n are the same as the
ones of AA⊤ ∈ Rm×m. Both matrices are also symmetric and PSD.

Proof.
A⊤A and AA⊤ are symmetric. We have x⊤A⊤Ax = ∥Ax∥2 ≥ 0 for all x which
implies A⊤A is PSD. The same argument applies to AA⊤.
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Proof continued

It remains to show that the non-zero eigenvalues of A⊤A ∈ Rn×n

are the same as the ones of AA⊤ ∈ Rm×m.
Let r be the rank of A. We know

rank(A) = rank(A⊤) = rank(A⊤A) = rank(AA⊤).

AA⊤ and A⊤A have a complete set of real eigenvalues and orthogonal
eigenvectors.
Let λ1, . . . ,λr be the r non-zero eigenvalues of A⊤A and v1 . . . ,vr the
corresponding eigenvectors. Let µ1, . . . ,µr be the r non-zero eigenvalues
of AA⊤ and w1 . . . ,wr be the corresponding eigenvectors.
A⊤Avk = λk vk . Hence, AA⊤Avk = λk Avk and so λk is a nonzero
eigenvalue of AA⊤ with eigenvector Avk .
(A⊤A)A⊤wi = A⊤(AA⊤wi) = µiA⊤wi for all i . This shows that µ1, . . . ,µr are
non-zero eigenvalues of A⊤A with corresponding eigenvectors
A⊤w1 . . . ,A⊤wr .
Hence, {µ1, . . . ,µr}= {λ1, . . . ,λr}.
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What else do we get for PSD matrices?

Proposition [Cholesky decomposition]
Every symmetric positive semidefinite matrix M is a Gram matrix of an upper
triangular matrix C. M = C⊤C is known as the Cholesky Decomposition.

Proof.
There is a decomposition M = VΛV⊤ with Λ a diagonal matrix with the
eigenvalues of M in the diagonal. Since M is PSD, Λii ≥ 0.
Define Λ1/2 by taking the square root of each diagonal entry of Λ. Then
M =

(
VΛ1/2)(VΛ1/2)⊤.

To make the matrices upper triangular use the QR decomposition:(
VΛ1/2)⊤ = QR with Q such that Q⊤Q = I and R upper triangular.

M =
(

VΛ1/2
)(

VΛ1/2
)⊤

= (QR)⊤ (QR) = R⊤Q⊤QR = R⊤R.

Taking C = R establishes the result.

Robert Weismantel December 16, 2024 7 / 13



How to establish a decomposition of the flavour of the
spectral theorem for general matrices?

Definition (SVD — Singular Value Decomposition)
Let A ∈ Rm×n. A singular value decomposition of A consists of orthogonal
matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV⊤, (1)

where Σ ∈ Rm×n is a diagonal matrix, U⊤U = I and V⊤V = I.
The columns of U (V ) are the left (right) singular vectors of A. The
diagonal elements of Σ, σi =Σii are called the singular values of A and
are ordered as

σ1 ≥ ·· · ≥ σmin{m,n} ≥ 0.

If A has rank r we can write the SVD in compact form A = UrΣr V⊤
r ,

where Ur ∈ Rm×r contains the first r left singular vectors, Vr ∈ Rn×r

contains the first r right singular vectors and Σr ∈ Rr×r is a diagonal
matrix with the first r singular values.
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What does an SVD give us?

Suppose A ∈ Rm×n and A = UΣV⊤ is its SVD.

AA⊤ = UΣV⊤VΣ⊤U⊤ = U
(
ΣΣ⊤

)
U⊤.

Hence, the left singular vectors of A are the eigenvectors of AA⊤. The
singular values of A are the square-root of the eigenvalues of AA⊤ (note
that ΣΣ⊤ ∈ Rm×m is diagonal). If m > n, A has n singular values and AA⊤

has m eigenvalues (which is larger than n), but the “missing” ones are 0.

A⊤A = V
(
Σ⊤Σ

)
V⊤.

Hence, the right singular vectors of A are the eigenvectors of A⊤A and the
singular values of A are the square-root of the eigenvalues of A⊤A (note
that Σ⊤Σ is n×n diagonal). If n > m, A has m singular values and A⊤A
has n eigenvalues (which is larger than m), but the “missing” ones are 0.
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The theorem

To wrap up the previous slide
It gives us an idea how to construct a SVD. We will use the spectral theorem
applied to the symmetric matrices A⊤A and AA⊤. The singular values and
vectors of A are in relation with eigenvalues and eigenvectors of these
matrices!

Theorem (The SVD Theorem)
Every matrix A ∈ Rm×n has an SVD decomposition of the form (1).
In other words:

Every linear transformation is diagonal when viewed in the bases of the
singular vectors.

Notes on the proof
Let A ∈ Rm×n of rank r . We build a compact SVD A = UrΣr V⊤

r . From this one
gets an SVD as in (1) by adding singular values that are zero and extending
singular vectors in both Ur and Vr to orthonormal bases.
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The proof I

The first steps
From the spectral theorem AA⊤ has a complete set of orthonormal
eigenvectors and can be written as

AA⊤ = UΛU⊤, (2)

where U ∈ Rm×m is orthogonal and Λ is diagonal.
Let us write (2) by ordering the diagonal entries of Λ in decreasing order.
(2) can be written in compact form, by keeping only the r non-zero
eigenvalues and eigenvectors,

AA⊤ = UrΛr U⊤
r

for Ur ∈ Rm×r such that U⊤
r Ur = I and Λr is r × r diagonal with the

non-zero eigenvalues of AA⊤.
The eigenvalues of AA⊤ are non-negative and so Λr has positive entries
on the diagonal. Let Σr ∈ Rr×r be the diagonal matrix with entries
σi := (Σr )ii =

√
Λii .

Our goal is to show that there is a n× r matrix Vr , with orthonormal columns,
such that A = UrΣr V⊤

r . We would have Σ−1
r U⊤

r A =Σ−1
r U⊤

r UrΣr V⊤
r = V⊤

r , or
equivalently Vr = A⊤UrΣ

−1
r . Define

Vr := A⊤UrΣ
−1
r .

This matrix has columns v1, . . . ,vr given by vk = 1
σk

A⊤uk .
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Show that with Vr := A⊤UrΣ
−1
r we obtain a compact

SVD.

1 V⊤
r Vr = I. Recall that AA⊤ = UrΛr U⊤

r :

V⊤
r Vr =

(
A⊤UrΣ

−1
r

)⊤
A⊤UrΣ

−1
r =Σ−1

r U⊤
r AA⊤UrΣ

−1
r

= Σ−1
r U⊤

r UrΛr U⊤
r UrΣ

−1
r =Σ−1

r ΛrΣ
−1
r = I

2 A = UrΣr V⊤
r . Note that

UrΣr V⊤
r = UrΣr

(
A⊤UrΣ

−1
r

)⊤
= Ur U⊤

r A.

Let us verify that A = Ur UT
r A by showing Ax = Ur UT

r Ax for all x ∈ Rn.
Let x ∈ N(A). Then Ax = 0 = Ur UT

r x
Let x ∈ C(AT ). It follows that x = AT y for y ∈ Rm and hence,

Ax = AAT y = UrΛr UT
r y = Ur IΛr UT

r y
= Ur UT

r UrΛr UT
r y = Ur UT

r AAT y = Ur UT
r Ax .
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Consequence of the SVD

Theorem.
A rank-r matrix is a sum of r rank-1 matrices. Let A ∈ Rm×n be a matrix of
rank r . Let σ1, . . . ,σr be the non-zero singular values of A with left and right
vectors u1, . . . ,ur , v1, . . . ,vr , respectively. Then

A =
r

∑
k=1

σk uk v⊤
k . (3)

Final remark
The SVD is a powerful tool. Many results presented in this course
become significantly simpler with the SVD.
For instance, if A is invertible and A has SVD A = UΣV⊤, then A−1 has
SVD A−1 = VΣ−1U⊤.
Similarly, one can define the Moore-Penrose Pseudoinverse by using the
SVD.
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