

Robert Weismantel

Week 14:From symmetric matrices to the singular value theorem

The spectral theorem: Let *A* be a real *n* ×*n* symmetric matrix

Let v_1, \ldots, v_n be an orthonormal basis of eigenvectors of A and $\lambda_1, \ldots, \lambda_n$ the associated eigenvalues. Then $A = \sum_{i=1}^n \lambda_i v_i v_i^\top$

Proposition [Rayleigh Quotient]

Let $A \in \mathbb{R}^{n \times n}$ be symmetric. The Rayleigh Quotient, defined for $x \in \mathbb{R}^n \setminus \{0\},$ as

For
$$
x \in \mathbb{R}^n \setminus \{0\}
$$
, let $R(x) = \frac{x^{\top} A x}{x^{\top} x}$.

R attains its maximum at $R(v_{\text{max}}) = \lambda_{\text{max}}$ and its minimum at $R(v_{\text{min}}) = \lambda_{\text{min}}$ where λ_{max} and λ_{min} are the largest and smallest eigenvalues of A and v_{max} , v_{min} their associated eigenvectors.

Proof.

Since $R(v_{\text{max}}) = \lambda_{\text{max}}$ and $R(v_{\text{min}}) = \lambda_{\text{min}}$ it is enough to show

$$
\lambda_{\min} \leq R(x) \leq \lambda_{\max} \text{ for all } x \in \mathbb{R}^n \setminus \{0\}.
$$

The proof continued

From the spectral theorem

For
$$
x \in \mathbb{R}^n \setminus \{0\}
$$
, $R(x) = \frac{x^{\top} (\sum_{i=1}^n \lambda_i v_i v_i^{\top}) x}{\|x\|^2} = \frac{\sum_{i=1}^n \lambda_i (x^{\top} v_i)^2}{\|x\|^2}$,

where v_1, \ldots, v_n form an orthonormal basis of eigenvectors of A and $\lambda_1, \ldots, \lambda_n$ are the associated eigenvalues.

۰

 \bullet

For all
$$
1 \leq i \leq n
$$
 $\lambda_{\min} (x^{\top} v_i)^2 \leq \lambda_i (x^{\top} v_i)^2 \leq \lambda_{\max} (x^{\top} v_i)^2$.

• Collecting all these inequalities we get

$$
\lambda_{\text{min}}\frac{\sum_{i=1}^n \left(x^\top v_i\right)^2}{\|x\|^2} \leq \frac{\sum_{i=1}^n \lambda_i \left(x^\top v_i\right)^2}{\|x\|^2} \leq \lambda_{\text{max}}\frac{\sum_{i=1}^n \left(x^\top v_i\right)^2}{\|x\|^2}.
$$

The v_i 's are orthonormal, the matrix V with the v_i 's as columns is $\textsf{orthogonal} \textsf{ and } \sum_{i=1}^n \left(x^\top v_i\right)^2 = \|Vx\|^2 = \|x\|^2 \textsf{ and so } \frac{\sum_{i=1}^n \left(x^\top v_i\right)^2}{\|x\|^2}$ $\frac{1(x-y_1)}{\|x\|^2} = 1.$

Definition (Positive Definite and Positive Semidefinite matrix)

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is said to be Positive Semidefinite / Positive Definite (PSD / PD) if all its eigenvalues are non-negative / positive.

Proposition derived from the Rayleigh Quotient

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is PSD if and only if $x^\top Ax \geq 0$ for all $x \in \mathbb{R}^n$. A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is PD if and only if $x^\top Ax > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}.$

Lemma

If A, *B* ∈ $\mathbb{R}^{n \times n}$ *are symmetric and PSD, then A+B is PSD.*

Proof.

If $x^T A x \geq 0$ and $x^T B x \geq 0$ for all $x \in \mathbb{R}^n$, then

$$
x^T(A+B)x = x^T(Ax+Bx) = x^T Ax + x^T Bx \ge 0.
$$

A key-observation: Gram matrices are PSD.

Definition (Gram Matrix)

Given *n* vectors, v_1, \ldots, v_n in \mathbb{R}^m , let $V \in \mathbb{R}^{m \times n}$ be the matrix with columns v_i . The Gram Matrix of *V* is defined to be the $n \times n$ matrix of inner products

$$
G_{ij} = v_i^{\top} v_j.
$$

In matrix notation, $G = V^{\top} V$.

Proposition

Let *A* ∈ R *m*×*n* . The non-zero eigenvalues of *A* [⊤]*A* ∈ R *ⁿ*×*ⁿ* are the same as the ones of *AA*[⊤] ∈ R *^m*×*m*. Both matrices are also symmetric and PSD.

Proof.

A [⊤]*A* and *AA*[⊤] are symmetric. We have *x* [⊤]*A* [⊤]*Ax* = ∥*Ax*∥ ² ≥ 0 for all *x* which implies *A* [⊤]*A* is PSD. The same argument applies to *AA*⊤.

Proof continued

It remains to show that the non-zero eigenvalues of $A^\top A \in \mathbb{R}^{n \times n}$ are the same as the ones of $\boldsymbol{A}\boldsymbol{A}^{\top}\in\mathbb{R}^{m\times m}.$

Let *r* be the rank of *A*. We know

$$
rank(A) = rank(A^{\top}) = rank(A^{\top}A) = rank(AA^{\top}).
$$

- *AA*[⊤] and *A* [⊤]*A* have a complete set of real eigenvalues and orthogonal eigenvectors.
- Let $\lambda_1, \ldots, \lambda_r$ be the *r* non-zero eigenvalues of $A^{\top}A$ and $v_1 \ldots, v_r$ the corresponding eigenvectors. Let μ_1, \ldots, μ_r be the *r* non-zero eigenvalues of *AA*[⊤] and *w*¹ ...,*w^r* be the corresponding eigenvectors.
- $\bm{A}^\top \bm{A} \bm{\nu}_k = \lambda_k \bm{\nu}_k$. Hence, $\bm{A} \bm{A}^\top \bm{A} \bm{\nu}_k = \lambda_k \bm{A} \bm{\nu}_k$ and so λ_k is a nonzero eigenvalue of *AA*[⊤] with eigenvector *Av^k* .
- $({\cal A}^\top{\cal A}){\cal A}^\top w_i={\cal A}^\top({\cal A}{\cal A}^\top w_i)=\mu_i{\cal A}^\top w_i$ for all *i*. This shows that μ_1,\ldots,μ_r are non-zero eigenvalues of *A* [⊤]*A* with corresponding eigenvectors *A* [⊤]*w*¹ ...,*A* [⊤]*w^r* .

• Hence,
$$
\{\mu_1, \ldots, \mu_r\} = \{\lambda_1, \ldots, \lambda_r\}.
$$

What else do we get for PSD matrices?

Proposition [Cholesky decomposition]

Every symmetric positive semidefinite matrix *M* is a Gram matrix of an upper triangular matrix $\textit{C.~} \textit{M}=\textit{C}^\top \textit{C}$ is known as the Cholesky Decomposition.

Proof.

 \bullet

- There is a decomposition *M* = *V*Λ*V* [⊤] with Λ a diagonal matrix with the eigenvalues of *M* in the diagonal. Since *M* is PSD, Λ*ii* ≥ 0.
- Define $\Lambda^{1/2}$ by taking the square root of each diagonal entry of Λ . Then *M* = $(VΛ^{1/2}) (VΛ^{1/2})^T$.
- To make the matrices upper triangular use the QR decomposition: $(V \Lambda^{1/2})^{\top} = QR$ with *Q* such that $Q^{\top} Q = I$ and *R* upper triangular.

$$
M = \left(V\Lambda^{1/2}\right)\left(V\Lambda^{1/2}\right)^{\top} = \left(QR\right)^{\top}\left(QR\right) = R^{\top}Q^{\top}QR = R^{\top}R.
$$

Taking $C = R$ establishes the result.

How to establish a decomposition of the flavour of the spectral theorem for general matrices?

Definition (SVD — Singular Value Decomposition)

Let *A* ∈ $\mathbb{R}^{m \times n}$. A singular value decomposition of *A* consists of orthogonal $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ such that

$$
A = U \Sigma V^{\top}, \tag{1}
$$

where $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix, $\boldsymbol{U}^\top \boldsymbol{U} = \boldsymbol{I}$ and $\boldsymbol{V}^\top \boldsymbol{V} = \boldsymbol{I}.$ The columns of *U* (*V*) are the left (right) singular vectors of *A*. The diagonal elements of Σ , $\sigma_i = \Sigma_{ii}$ are called the singular values of A and are ordered as

$$
\sigma_1 \geq \cdots \geq \sigma_{\min\{m,n\}} \geq 0.
$$

If *A* has rank *r* we can write the SVD in compact form $A = U_r \Sigma_r V_r^{\top}$, where $U_r \in \mathbb{R}^{m \times r}$ contains the first *r* left singular vectors, $V_r \in \mathbb{R}^{n \times r}$ contains the first *r* right singular vectors and $\Sigma_r \in \mathbb{R}^{r \times r}$ is a diagonal matrix with the first *r* singular values.

Suppose $A \in \mathbb{R}^{m \times n}$ and $A = U \Sigma V^{\top}$ is its SVD.

$$
A A^{\top} = U \Sigma V^{\top} V \Sigma^{\top} U^{\top} = U \left(\Sigma \Sigma^{\top} \right) U^{\top}.
$$

Hence, the left singular vectors of *A* are the eigenvectors of *AA*⊤. The singular values of *A* are the square-root of the eigenvalues of *AA*[⊤] (note that ΣΣ[⊤] ∈ R *^m*×*^m* is diagonal). If *m* > *n*, *A* has *n* singular values and *AA*[⊤] has *m* eigenvalues (which is larger than *n*), but the "missing" ones are 0.

$$
A^{\top} A = V\left(\Sigma^{\top}\Sigma\right)V^{\top}.
$$

Hence, the right singular vectors of *A* are the eigenvectors of *A* [⊤]*A* and the singular values of *A* are the square-root of the eigenvalues of *A* [⊤]*A* (note that Σ [⊤]Σ is *n*×*n* diagonal). If *n* > *m*, *A* has *m* singular values and *A* [⊤]*A* has *n* eigenvalues (which is larger than *m*), but the "missing" ones are 0.

 \bullet

 \bullet

To wrap up the previous slide

It gives us an idea how to construct a SVD. We will use the spectral theorem applied to the symmetric matrices *A* [⊤]*A* and *AA*⊤. The singular values and vectors of *A* are in relation with eigenvalues and eigenvectors of these matrices!

Theorem (The SVD Theorem)

Every matrix A $\in \mathbb{R}^{m \times n}$ has an SVD decomposition of the form [\(1\)](#page-7-0). *In other words:*

Every linear transformation is diagonal when viewed in the bases of the singular vectors.

Notes on the proof

Let $A \in \mathbb{R}^{m \times n}$ of rank *r*. We build a compact SVD $A = U_r \Sigma_r V_r^\top$. From this one gets an SVD as in [\(1\)](#page-7-0) by adding singular values that are zero and extending singular vectors in both *U^r* and *V^r* to orthonormal bases.

The proof I

The first steps

From the spectral theorem *AA*[⊤] has a complete set of orthonormal eigenvectors and can be written as

$$
A A^{\top} = U \Lambda U^{\top}, \qquad (2)
$$

where $U \in \mathbb{R}^{m \times m}$ is orthogonal and Λ is diagonal.

Let us write [\(2\)](#page-10-0) by ordering the diagonal entries of Λ in decreasing order. [\(2\)](#page-10-0) can be written in compact form, by keeping only the *r* non-zero eigenvalues and eigenvectors,

$$
A A^{\top} = U_r \Lambda_r U_r^{\top}
$$

for $U_r \in \mathbb{R}^{m \times r}$ such that $U_r^\top U_r = I$ and Λ_r is $r \times r$ diagonal with the non-zero eigenvalues of *AA*⊤.

The eigenvalues of *AA*[⊤] are non-negative and so Λ*^r* has positive entries on the diagonal. Let $\Sigma_r \in \mathbb{R}^{r \times r}$ be the diagonal matrix with entries $\sigma_i := (\Sigma_r)_{ii} = \sqrt{\Lambda_{ii}}$.

Show that with $V_r := A^\top U_r \Sigma_r^{-1}$ we obtain a compact SVD.

$$
\bullet \quad V_r^{\top} V_r = I. \text{ Recall that } AA^{\top} = U_r \Lambda_r U_r^{\top}:
$$

$$
V_r^\top V_r = \left(A^\top U_r \Sigma_r^{-1}\right)^\top A^\top U_r \Sigma_r^{-1} = \Sigma_r^{-1} U_r^\top A A^\top U_r \Sigma_r^{-1}
$$

= $\Sigma_r^{-1} U_r^\top U_r \Lambda_r U_r^\top U_r \Sigma_r^{-1} = \Sigma_r^{-1} \Lambda_r \Sigma_r^{-1} = I$

2 $A = U_r \Sigma_r V_r^{\top}$. Note that

$$
U_r \Sigma_r V_r^\top = U_r \Sigma_r \left(A^\top U_r \Sigma_r^{-1} \right)^\top = U_r U_r^\top A.
$$

Let us verify that $A = U_r U_r^T A$ by showing $Ax = U_r U_r^T Ax$ for all $x \in \mathbb{R}^n$.

- Let $x \in N(A)$. Then $Ax = 0 = U_r U_r^T x$
- Let $x \in C(A^T)$. It follows that $x = A^Ty$ for $y \in \mathbb{R}^m$ and hence,

$$
Ax = AA^T y = U_r \Lambda_r U_r^T y = U_r I \Lambda_r U_r^T y
$$

= $U_r U_r^T U_r \Lambda_r U_r^T y = U_r U_r^T A A^T y = U_r U_r^T A x.$

Theorem.

A rank-*r* matrix is a sum of *r* rank-1 matrices. Let *A* ∈ R *^m*×*ⁿ* be a matrix of rank *r*. Let $\sigma_1, \ldots, \sigma_r$ be the non-zero singular values of A with left and right vectors $u_1, \ldots, u_r, v_1, \ldots, v_r$, respectively. Then

$$
A = \sum_{k=1}^{r} \sigma_k u_k v_k^{\top}.
$$
 (3)

Final remark

- The SVD is a powerful tool. Many results presented in this course become significantly simpler with the SVD.
- For instance, if A is invertible and *A* has SVD *A* = *U*Σ*V* [⊤], then *A* [−]¹ has $SVD A^{-1} = V\Sigma^{-1}U^{T}.$
- **•** Similarly, one can define the Moore-Penrose Pseudoinverse by using the SVD.