

Robert Weismantel

Week 8: Orthogonal vectors, orthogonal complements of subspaces and projections

Orthogonality of vectors and subspaces

The target

Orthogonality is a key concept that allows us to decompose a space into two subspaces, understand systems of linear equations, and allows us to define a pseudoinverse.

Definition

Vectors $v, w \in \mathbb{R}^n$ are orthogonal/ perpendicular (see Def. 1.15) if

$$v^T w = \sum_{i=1}^n v_i w_i = 0.$$

Subspaces *V* and *W* are orthogonal if for all $v \in V$ and $w \in W$, the vectors *v* and *w* are orthogonal.

Lemma

Let v_1, \ldots, v_k and w_1, \ldots, w_l be bases of subspace V and W. V and W are orthogonal if and only if v_i and w_j are orthogonal for all i and j.

Robert Weismantel

Preliminaries

Proof of the first lemma

• Suppose *V* and *W* are orthogonal. Since $v_i \in V$ for all *i* and $w_j \in W$ for all *j*, we have

$$v_i^T w_j = 0$$
 for all i, j .

• Conversely, assume that $v_i^T w_j = 0$ for all *i* and *j*.

• Let $v = \sum_{i=1}^{k} \lambda_i v_i \in V$ and $w = \sum_{j=1}^{l} \mu_j w_j \in W$.

$$\mathbf{v}^T \mathbf{w} = \sum_{i=1}^k \lambda_i \mathbf{v}_i^T \mathbf{w} = \sum_{i=1}^k \lambda_i \mathbf{v}_i^T \sum_{j=1}^l \mu_j \mathbf{w}_j = \sum_{i=1}^k \sum_{j=1}^l \mu_j \lambda_i \mathbf{v}_i^T \mathbf{w}_j = 0.$$

Lemma

Let V and W be two orthogonal subspaces of \mathbb{R}^n . Let v_1, \ldots, v_k be a basis of subspace V. Let w_1, \ldots, w_l be a basis of subspace W. The set of vectors $\{v_1, \ldots, v_k, w_1, \ldots, w_l\}$ are linearly independent.

Further preliminaries

Proof of the second lemma

Consider the linear combination

$$(*)\sum_{i=1}^{k}\lambda_{i}v_{i}+\sum_{j=1}^{l}\mu_{j}w_{j}=0.$$

We want to show $\lambda_i = 0$ for all *i* and $\mu_i = 0$ for all *j*.

• Let $v = \sum_{i=1}^{k} \lambda_i v_i$. (*) is equivalent to $v = -\sum_{j=1}^{l} \mu_j w_j$. We obtain

$$\mathbf{v}^{\mathsf{T}}\mathbf{v} = -\sum_{j=1}^{l} \mu_j \mathbf{v}^{\mathsf{T}} \mathbf{w}_j = \mathbf{0}.$$

- Hence, v = 0. This implies $\lambda_i = 0$ for all $i (v_1, \dots, v_k \text{ is a basis of } V)$.
- Accordingly, one shows that $\mu_j = 0$ for all *j* by considering $w = \sum_{j=1}^{l} \mu_j w_j$ and noticing that $w^T w = 0$.

Corollary

Let V and W be orthogonal subspaces. Then $V \cap W = \{0\}$. Moreover,

 $\dim(V+W) = \dim(\{v+w \mid v \in V, w \in W\}) = \dim(V) + \dim(W) \le n.$

Definition

Let V be a subspace of \mathbb{R}^n . We define the orthogonal complement of V as

$$V^{\perp} = \{ w \in \mathbb{R}^n \mid w^T v = 0 \text{ for all } v \in V \}.$$

 V^{\perp} is a subspace of \mathbb{R}^{n} !

Theorem

Let
$$A \in \mathbb{R}^{m \times n}$$
 be a matrix. Then $N(A) = C(A^T)^{\perp} = R(A)^{\perp}$.

Proof of the Theorem

Proof that $N(A) \subseteq C(A^T)^{\perp}$.

Let $x \in N(A)$. Take any $b \in C(A^T) = R(A)$, i.e., $b = A^T y$ for some $y \in \mathbb{R}^m$. Then

$$b^T x = y^T A x = y^T 0 = 0.$$

Hence, $x \in C(A^T)^{\perp}$.

Proof that $C(A^T)^{\perp} \subseteq N(A)$.

Let $x \in C(A^T)^{\perp}$. By definition, $b^T x = 0$ for all $b \in C(A^T)$. Define y as the following specific vector: $y := Ax \in \mathbb{R}^m$. Then $b := A^T y \in C(A^T)$ and hence, $x^T b = 0$. We obtain

$$0 = x^T b = x^T A^T y = x^T A^T A x = \|Ax\|^2 \iff x \in \mathcal{N}(A).$$

Recall from Part 1:

If
$$r = \dim(R(A)) = \dim(C(A^T))$$
, then $n - r = \dim(N(A))$.

The orthogonal complement of a subspace II

Theorem

Let V, W be orthogonal subspaces of \mathbb{R}^n . The statements are equivalent. (i) $W = V^{\perp}$.

- (i) VV = V.
- (ii) $\dim(V) + \dim(W) = n$.
- (iii) Every $u \in \mathbb{R}^n$ can be written as u = v + w with unique $v \in V$, $w \in W$.

Recall for the proof

Let v_1, \ldots, v_k be a basis of V and w_1, \ldots, w_l a basis of W. V and W are orthogonal if and only if $v_i^T w_j = 0$ for all $i \in \{1, \ldots, k\}, j \in \{1, \ldots, l\}$.

(i) implies (ii):

Define $A \in \mathbb{R}^{k \times n}$ to be the matrix with row vectors v_1, \ldots, v_k . Then $V = R(A) = C(A^T)$. Moreover, $W = V^{\perp} = N(A)$ from the previous theorem. From the remark one slide before:

 $\dim(V) = k$ and hence, $\dim(W) = n - k$.

Proof continued

(ii) implies (iii):

- The vectors in the set $\{v_1, \ldots, v_k, w_1, \ldots, w_l\}$ are linearly independent.
- Since by assumption l = n k, this set is a basis of \mathbb{R}^n . Hence,

for all
$$u \in \mathbb{R}^n$$
, $u = \sum_{i=1}^k \lambda_i v_i + \sum_{j=1}^l \mu_j w_j$, where $\lambda_1, \lambda_k, \mu_1, \dots, \mu_l \in \mathbb{R}$.

• Define the unique vectors $\mathbf{v} := \sum_{i=1}^{k} \lambda_i \mathbf{v}_i, \ \mathbf{w} := \sum_{j=1}^{l} \mu_j \mathbf{w}_j.$

(iii) implies (i): We need to show that $W = V^{\perp}$.

- $W \subseteq V^{\perp}$ since W is orthogonal to V.
- For the reverse inclusion, let $u \in V^{\perp} \subseteq \mathbb{R}^{n}$. From (iii) u = v + w where $v \in V$ and $w \in W$. Then

$$\mathbf{0} = u^T v = v^T v + v^T w = v^T v = \|v\|^2 \Rightarrow v = \mathbf{0} \Rightarrow u = w \in W.$$

Decomposition of \mathbb{R}^n

Lemma

Let *V* be a subspace of \mathbb{R}^n . Then $V = (V^{\perp})^{\perp}$.

Proof. Let v_1, \ldots, v_k be a basis of V and w_1, \ldots, w_l a basis of V^{\perp} .

• l = n - k. Moreover, $v_i^T w_j = 0$ for all *i* and *j* and hence,

$$(V^{\perp})^{\perp} = \{x \in \mathbb{R}^n \mid x^T w_j = 0 \text{ for all } j = 1, \dots, n-k\}.$$

- Since $v_j^T w_j = 0$ for all j = 1, ..., n k we obtain that $V \subseteq (V^{\perp})^{\perp}$. From the Theorem before, dim $((V^{\perp})^{\perp}) = n (n k) = k$.
- Since {v₁,...,v_k} ⊆ V ⊆ (V[⊥])[⊥] are linearly independent, they are a basis of (V[⊥])[⊥]. Hence V = (V[⊥])[⊥].

Corollary

For a subspace V of \mathbb{R}^n , $\mathbb{R}^n = V + V^{\perp} = \{v + w \mid v \in V, w \in V^{\perp}\}$.

The set of all solutions to a system of linear equations

Corollary

For
$$A \in \mathbb{R}^{m imes n}$$
, $N(A) = C(A^T)^{\perp}$ and $C(A^T) = N(A)^{\perp}$.

To refine our understanding,

Let $A \in \mathbb{R}^{m \times n}$. There are two important subspaces associated with A:

$$\begin{array}{ll} \mathcal{N}(\mathcal{A}) &=& \{x \in \mathbb{R}^n \mid \mathcal{A}x = 0\} \\ \mathcal{R}(\mathcal{A}) &=& \mathcal{C}(\mathcal{A}^T) = \{\mathcal{A}^T y \mid y \in \mathbb{R}^m\} = \{x \in \mathbb{R}^n \mid \exists y \in \mathbb{R}^m \text{ such that } x = \mathcal{A}^T y\}. \end{array}$$

N(A) is the orthogonal complement of R(A) and R(A) the orthogonal complement of N(A). Hence

 $\forall x \in \mathbb{R}^n$ there exist $x_0 \in N(A)$ and $x_1 \in R(A)$ such that $x = x_0 + x_1$ and $x_1^T x_0 = 0$.

Theorem

$$\{x \in \mathbb{R}^n \mid Ax = b\} = x_1 + N(A) \text{ where } x_1 \in R(A) \text{ such that } Ax_1 = b.$$

A link between the nullspaces of A and $A^T A$

Lemma

Let
$$A \in \mathbb{R}^{m \times n}$$
. Then $N(A) = N(A^T A)$ and $C(A^T) = C(A^T A)$.

Proof.

- If $x \in N(A)$ then Ax = 0 and so $A^{\top}Ax = 0$, thus $x \in N(A^{\top}A)$.
- If $x \in N(A^{\top}A)$ then $A^{\top}Ax = 0$. This implies that

$$x^{\top}A^{\top}Ax = x^{\top}0 = 0.$$

This gives

$0 = x^\top A^\top A x = (Ax)^\top (Ax) = \|Ax\|^2,$

so Ax = 0 and so $x \in N(A)$.

For the second statement we notice

$$C(A^{\mathsf{T}}) = N(A)^{\perp} = N(A^{\mathsf{T}}A)^{\perp} = C((A^{\mathsf{T}}A)^{\mathsf{T}}) = C(A^{\mathsf{T}}A)^{\mathsf{T}}$$

Definition (Projection of a vector onto a subspace)

The projection of a vector $b \in \mathbb{R}^m$ on a subspace S (of \mathbb{R}^m) is the point in S that is closest to b. In other words

$$\operatorname{proj}_{\mathcal{S}}(b) = \operatorname{argmin}_{p \in \mathcal{S}} \|b - p\|.$$

Sanity check

This is only a proper definition if the minimum exists and is unique.

The one-dimensional case

Let *S* be the subspace corresponding to the line that goes through the vector $a \in \mathbb{R}^m \setminus \{0\}$, i.e. $S = \{\lambda a \mid \lambda \in \mathbb{R}\} = C(a)$. By drawing a two dimensional example one can see that the projection *p* is the vector in the subspace *S* such that the "error vector" e = b - p is perpendicular to *a* (i.e. $b - p \perp a$).

(1)

The one dimensional case

Lemma

Let $a \in \mathbb{R}^m \setminus \{0\}$. The projection of $b \in \mathbb{R}^m$ on $S = \{\lambda a \mid \lambda \in \mathbb{R}\} = C(a)$ is

$$\operatorname{proj}_{S}(b) = \frac{aa^{T}}{a^{T}a}b.$$

Proof. Let $p \in S$, $p = \lambda a$ for $\lambda \in \mathbb{R}$.

$$\|b-p\|^2 = (b-p)^T (b-p) = b^T b - 2b^T p + p^T p = \|b\|^2 - 2\lambda b^T a + \lambda^2 \|a\|^2 = g(\lambda).$$

g is a convex, quadratic function in one variable λ .

The minimizer is obtained at the point λ^* where the derivative vanishes.

$$g'(\lambda) = -2b^{T}a + 2\lambda ||a||^{2} = 0 \iff \lambda^{*} = \frac{b^{T}a}{a^{T}a}.$$

Hence, $\operatorname{proj}_{S}(b) = \lambda^{*}a = a\frac{b^{T}a}{a^{T}a} = a\frac{a^{T}b}{a^{T}a} = \frac{aa^{T}}{a^{T}a}b.$

About our initial intuition

Our guess was that

the projection p should be the vector in the subspace S such that the "error vector" e = b - p is perpendicular to a, i.e.,

 $(b - \operatorname{proj}_{S}(b)) \perp a.$

By substituting what we just computed we get

$$a^{T}(b - \operatorname{proj}_{\mathcal{S}}(b)) = a^{T}(b - \frac{aa^{T}}{a^{T}a}b) = a^{T}b - a^{T}(\frac{aa^{T}}{a^{T}a}b) =$$

$$a^Tb-\frac{1}{a^Ta}a^Taa^Tb=a^Tb-a^Tb=0.$$

A final check

The projection of a vector that is already a multiple of *a* should be the vector itself. This is indeed true!

Robert Weismantel

The general case

The idea is similiar to the one-dimensional case

Let *S* be a subspace in \mathbb{R}^m generated by $a_1, \ldots, a_n \in S$, i.e.,

$$S = \operatorname{span}(a_1, \ldots, a_n) = C(A) = \{Ax \mid x \in \mathbb{R}^n\}$$

where

$$A = \left[\begin{array}{ccc} | & | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | & | \end{array} \right].$$

Lemma

The projection of a vector $b \in \mathbb{R}^m$ to the subspace S = C(A) can be written as

 $\operatorname{proj}_{S}(b) = A\hat{x}$, where \hat{x} satisfies the normal equations $A^{T}A\hat{x} = A^{T}b$.

Recall for m = 1

$$\operatorname{proj}_{\mathcal{S}}(b) = \lambda^* a = \frac{aa^T}{a^T a}b \iff a^T a\lambda^* a = a^T ba \iff a^T a\lambda^* = a^T b.$$

Robert Weismante

Proof.

- $b \in \mathbb{R}^{m}$. Hence b = p + e where $p \in S$ and $e \in S^{\perp}$, i.e., $p^{T}e = 0$.
- Consider another point $p' \in S$. Then $p p' \in S$ and hence, $e^T(p p') = 0$. This gives

$$\begin{aligned} \|p'-b\|^2 &= \|p'-p+p-b\|^2 = \|p'-p-e\|^2 \\ &= \|p'-p\|^2 + \|e\|^2 \ge \|e\|^2 = \|p-b\|^2. \end{aligned}$$

We have shown that

$$\operatorname{\mathsf{proj}}_{\mathcal{S}}(b) = p = A\hat{x} \in S$$

where b = p + e with $e \in S^{\perp}$.

• Since S = C(A),

 $(b - \operatorname{proj}_{\mathcal{S}}(b)) \perp a_i$ for all $i = 1, ..., n \iff a_i^T(b - \operatorname{proj}_{\mathcal{S}}(b)) = 0$ for all i.

This is equivalent to saying that

$$A^{T}(b - \operatorname{proj}_{S}(b)) = 0 \iff A^{T}(b - A\hat{x}) = 0 \iff A^{T}A\hat{x} = A^{T}b.$$