

Robert Weismantel

Week 9: An explicit formula for projections, application of projections to data fitting and orthonormal bases

Let *S* be a subspace in \mathbb{R}^m generated by $a_1, \ldots, a_n \in S$, i.e.,

$$S = \operatorname{span}(a_1, \dots, a_n) = C(A) = \{A\lambda \mid \lambda \in \mathbb{R}^n\}$$

where

$$A = \left[egin{array}{cccc} ert & ert & ert & ert \ a_1 & a_2 & \cdots & a_n \ ert & ert & ert & ert \end{array}
ight].$$

Lemma

The projection of a vector $b \in \mathbb{R}^m$ to the subspace S = C(A) can be written as

 $\operatorname{proj}_{S}(b) = A\hat{x}$, where \hat{x} satisfies the normal equations $A^{T}A\hat{x} = A^{T}b$.

Can we derive an explicit formula for projections?

Lemma

For a matrix $A \in \mathbb{R}^{m \times n}$ we have that $A^T A$ is invertible if and only if A has linearly independent columns.

Proof.

 $A^{T}A$ is invertible if and only if $N(A^{T}A) = \{0\}$. We know that $N(A^{T}A) = N(A)$ and hence, the result follows.

Theorem

Let *S* be a subspace in \mathbb{R}^m and *A* a matrix whose columns are a basis of *S*. The projection of $b \in \mathbb{R}^m$ to *S* is given by

$$\operatorname{proj}_{\mathcal{S}}(b) = Pb,$$

where $P = A (A^{\top}A)^{-1} A^{\top}$ is the projection matrix.

Robert Weismantel

Consider the projection matrix $P = A (A^{\top}A)^{-1} A^{\top}$.

- The matrix A (and A[⊤]) are not necessarily square, and so they don't have inverses.
- Hence, the expression $A(A^{\top}A)^{-1}A^{\top}$ cannot be simplified by expanding $(A^{\top}A)^{-1}$.
- This would yield *I* = *P* and would only make sense if *S* was all of \mathbb{R}^m . This case is less interesting as it means that *A* is invertible.
- P can be viewed as a mapping: for a given vector b its projection is given by proj_S(b) = Pb.

A few coments about projections II

Consider the projection matrix $P = A (A^{\top}A)^{-1} A^{\top}$.

If b∈ ℝ^m, then proj_S(proj_s(b)) = proj_S(b) by definition. This requires us to have that PPb = Pb, i.e., we should have P² = P. Indeed

$$P^{2} = \left(A\left(A^{\top}A\right)^{-1}A^{\top}\right)^{2} = A\left(A^{\top}A\right)^{-1}A^{\top}A\left(A^{\top}A\right)^{-1}A^{\top} = P$$

Let S[⊥] be the orthogonal complement of S and P the projection matrix onto the subspace S, i.e., proj_S(b) = Pb. Then I − P is the projection matrix that maps b ∈ ℝ^m to proj_{S[⊥]}(b). This follows since b = e + proj_S(b) = e + Pb where e ∈ S[⊥]. Hence,

$$(I-P)b = b - Pb = e = \operatorname{proj}_{S^{\perp}}(b).$$

• Note that – as it should be – we have that $(I - P)^2 = I - 2P + P^2 = I - P.$

Another name for projections: least squares

Definition

For $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ a least squares solution solves

$$\min_{\mathbf{x}\in\mathbb{R}^n}\|\mathbf{A}\mathbf{x}-\mathbf{b}\|^2.$$

The link to projections

Consider the subspace $C(A) = \{Ax \mid x \in \mathbb{R}^n\}$. Then,

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|^2 = \min_{p \in C(A)} \|b - p\|^2 = \|b - \operatorname{proj}_{C(A)}(b)\|^2.$$

Remark

- A least squares solution is given by $\operatorname{proj}_{C(A)}(b) = A\hat{x}$, where $A^T A \hat{x} = A^T b$.
- If A has linearly independent columns, then A^TA is invertible.
 Hence, for the least squares solution we have the explicit formula

Robert Weismantel

An application of least squares

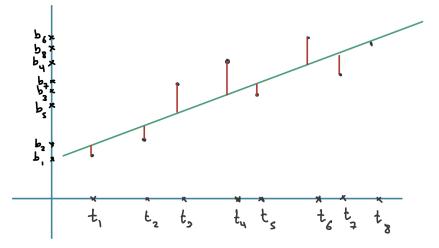


Figure: Fitting a line to points

An application of least squares

Linear regression

- is the task to fit a line through data points.
- Consider data points

$$(t_1, b_1), (t_2, b_2), \ldots, (t_m, b_m),$$

representing some attribute *b* over time *t*.

• If the relation between *t* and *b* is explained by a linear relationship then it makes sense to search for constants $\alpha_0 \in \mathbb{R}$ and $\alpha_1 \in \mathbb{R}$ such that

$$b_k \approx \alpha_0 + \alpha_1 t_k$$
.

Find α_0 and α_1 minimizing the sum of squares of the errors

$$\min_{\alpha_0,\alpha_k}\sum_{k=1}^m (b_k - [\alpha_0 + \alpha_1 t_k])^2.$$

An explicit formula under one assumption.

In matrix-vector notation

b =

$$\begin{array}{c} \min_{\alpha_{0},\alpha_{1}} \left\| b - A \left[\begin{array}{c} \alpha_{0} \\ \alpha_{1} \end{array} \right] \right\|^{2}, \quad (1)$$

$$\begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m-1} \\ b_{m} \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & t_{1} \\ 1 & t_{2} \\ \vdots & \vdots \\ 1 & t_{m-1} \\ 1 & t_{m} \end{bmatrix}.$$

where

If A has independent columns, the solution is

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} = (A^{\top}A)^{-1}A^{\top}b = \begin{bmatrix} m & \sum_{k=1}^m t_k \\ \sum_{k=1}^m t_k & \sum_{k=1}^m t_k^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum_{k=1}^m b_k \\ \sum_{k=1}^m t_k b_k \end{bmatrix}$$

Robert Weismantel

We can assume that A has independent columns

Lemma

The columns of the $m \times 2$ matrix A defined before are linearly dependent if and only if $t_i = t_j$ for all $i \neq j$.

Proof.

- Suppose that there are two indices $i \neq j$ such that $t_i \neq t_j$. Let **1** be the all ones-vector in \mathbb{R}^m and *t* the vector with components t_1, \ldots, t_m .
- Consider the system in variables λ, μ

$$\lambda \mathbf{1} + \mu t = \mathbf{0}.$$

• Since $t_i \neq t_j$ we can subtract row *j* from row *i* to obtain

$$\lambda 0 + \mu(t_i - t_j) = 0 \iff \mu = 0 \text{ since } t_i - t_j \neq 0.$$

10/16

 This implies that 1
 O and hance
 A has full column rank

 Robert Weismantel
 November 8, 2024
 November 8, 2024

Fitting a parabola: work it out!

If we believe the relationship between t_k and b_k is quadratic we could attempt to fit a parabola:

$$b_k \approx \alpha_0 + \alpha_1 t_k + \alpha_2 t_k^2.$$

This is a linear function in α₀, α₁, and α₂. Similarly as with linear regression, it is natural to attempt to minimze

$$\min_{\alpha_0,\alpha_1,\alpha_2} \left\| b - A \left[\begin{array}{c} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{array} \right] \right\|^2.$$

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{m-1} \\ b_m \end{bmatrix} \text{ and } A = \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ \vdots & \vdots \\ 1 & t_{m-1} & t_{m-1}^2 \\ 1 & t_m & t_m^2 \end{bmatrix}$$

(2)

Definition (Orthonormal vectors)

 $q_1, \ldots, q_n \in \mathbb{R}^m$ are orthonormal if they are orthogonal and have norm 1, i.e.,

$$m{q}_i^Tm{q}_j = \delta_{ij} = \left\{ egin{array}{cc} 0 & ext{if } i
eq j \ 1 & ext{if } i = j. \end{array}
ight.,$$

where δ_{ij} is the Kronecker delta.

Remark and example

- If *Q* is the matrix whose columns are the vectors *q_i*'s, then the condition that the vectors are orthonormal can be rewritten as *Q*[⊤]*Q* = *I*.
- *Q* may not be a square matrix, and so it is not necessarily the case that $QQ^{\top} = I$.
- A classical example of an orthonormal set of vectors is the canonical basis, $e^1, \ldots, e^n \in \mathbb{R}^n$ where e^i is the vector with a 1 in

12/16

Orthogonal matrices

Definition (Orthogonal matrix)

A square matrix $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix when $Q^{\top}Q = I$. In this case, $QQ^{\top} = I$, $Q^{-1} = Q^{\top}$, and the columns of Q form an orthonormal basis for \mathbb{R}^n .

Example

The 2 \times 2 matrix *Q* that corresponds to rotating, counterclockwise, the plane by θ ,

$$R_{ heta} = \left[egin{array}{cc} \cos heta & -\sin heta \ \sin heta & \cos heta \end{array}
ight]$$

is an orthogonal matrix. Indeed,

$$R_{\theta}^{T}R_{\theta} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = I.$$

Permutation matrices are orthogonal matrices

Definition

A permutation is a bijective map

$$\pi: \{1, ..., n\} \mapsto \{1, ..., n\}, \text{ i.e., } \pi(i) \neq \pi(j) \text{ for } i \neq j.$$

The permutation matrix $A \in \mathbb{R}^{n \times n}$ associated with π has entries $A_{ij} = 1$ if $\pi(i) = j$ and $A_{ij} = 0$, otherwise.

Example

Permutation matrices are another example of orthogonal matrices. Indeed, A^T is the permutation matrix associated with the permutation σ defined as $\sigma(j) = i$ whenever $\pi(i) = j$. Hence, $A^T A = I$, i.e., A is an orthogonal matrix.

Challenge

For every permutation matrix A there exists a positive integer k such

Proposition

Orthogonal matrices preserve norm and inner product of vectors. In other words, if $Q \in \mathbb{R}^{n \times n}$ is orthogonal then, for all $x, y \in \mathbb{R}^n$

$$|Qx|| = ||x||$$
 and $(Qx)^{\top}(Qy) = x^{\top}y$

Proof of the second inequality.

For
$$x, y \in \mathbb{R}^n$$
, $(Qx)^\top (Qy) = x^\top Q^\top Qy = x^\top Iy = x^\top y$.

Proof of the first equality.

For $x \in \mathbb{R}^n$ we have that $||Qx|| \ge 0$ and $||x|| \ge 0$. Then

$$\|Qx\|^2 = (Qx)^\top (Qx) = x^\top x = \|x\|^2 \quad \Rightarrow \quad \|Qx\| = \|x\|.$$

Projections with Orthonormal Basis

The message here

An access to an orthonormal basis simplifies calculations for projections.

Observation

Let *S* be a subspace of \mathbb{R}^m and q_1, \ldots, q_n an orthonormal basis for *S*. Let

$$Q = \begin{bmatrix} q_1 & , & \cdots & , & q_n \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

The projection matrix that projects to *S* is given by QQ^{\top} and the least squares solution attaining $\min_{x \in \mathbb{R}^n} ||Qx - b||^2$ is given by $\hat{x} = Q^{\top}b$.

Remark

When *Q* is square then QQ^{\top} is simply the identity corresponding to projecting to \mathbb{R}^n . For $x \in \mathbb{R}^n$ it writes it a linear combination of the orthonormal basis.