
Robert Weismantel

Week 9: An explicit formula for projections,
application of projections to data fitting and

orthonormal bases



Recall from the previous lecture:

Let S be a subspace in Rm generated by a1, . . . ,an ∈ S, i.e.,

S = span(a1, . . . ,an) = C(A) = {Aλ | λ ∈ Rn}

where

A =

 | | |
a1 a2 · · · an
| | |

 .

Lemma
The projection of a vector b ∈ Rm to the subspace S = C(A) can be
written as

projS(b) = Ax̂ , where x̂ satisfies the normal equations AT Ax̂ = AT b.
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Can we derive an explicit formula for projections?

Lemma
For a matrix A ∈ Rm×n we have that AT A is invertible if and only if A
has linearly independent columns.

Proof.
AT A is invertible if and only if N(AT A) = {0}. We know that
N(AT A) = N(A) and hence, the result follows.

Theorem
Let S be a subspace in Rm and A a matrix whose columns are a basis
of S. The projection of b ∈ Rm to S is given by

projS(b) = Pb,

where P = A
(
A⊤A

)−1 A⊤ is the projection matrix.
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A few coments about projections I

Consider the projection matrix P = A
(
A⊤A

)−1 A⊤.

The matrix A (and A⊤) are not necessarily square, and so they
don’t have inverses.
Hence, the expression A

(
A⊤A

)−1 A⊤ cannot be simplified by
expanding

(
A⊤A

)−1.
This would yield I = P and would only make sense if S was all of
Rm. This case is less interesting as it means that A is invertible.
P can be viewed as a mapping: for a given vector b its projection
is given by projS(b) = Pb.
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A few coments about projections II

Consider the projection matrix P = A
(
A⊤A

)−1 A⊤.

If b ∈ Rm, then projS(projs(b)) = projS(b) by definition. This
requires us to have that PPb = Pb, i.e., we should have P2 = P.
Indeed

P2 =

(
A
(

A⊤A
)−1

A⊤
)2

= A
(

A⊤A
)−1

A⊤A
(

A⊤A
)−1

A⊤ = P.

Let S⊥ be the orthogonal complement of S and P the projection
matrix onto the subspace S, i.e., projS(b) = Pb. Then I −P is the
projection matrix that maps b ∈ Rm to projS⊥(b). This follows since
b = e+projS(b) = e+Pb where e ∈ S⊥. Hence,

(I −P)b = b−Pb = e = projS⊥(b).

Note that – as it should be – we have that
(I −P)2 = I −2P +P2 = I −P.
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Another name for projections: least squares

Definition
For A ∈ Rm×n and b ∈ Rm a least squares solution solves

min
x∈Rn

∥Ax −b∥2.

The link to projections
Consider the subspace C(A) = {Ax | x ∈ Rn}. Then,

min
x∈Rn

∥Ax −b∥2 = min
p∈C(A)

∥b−p∥2 = ∥b−projC(A)(b)∥2.

Remark
A least squares solution is given by projC(A)(b) = Ax̂ , where
AT Ax̂ = AT b.
If A has linearly independent columns, then AT A is invertible.
Hence, for the least squares solution we have the explicit formula

x̂ = (AT A)−1AT b.
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An application of least squares

Figure: Fitting a line to points
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An application of least squares

Linear regression
is the task to fit a line through data points.
Consider data points

(t1,b1),(t2,b2), . . . ,(tm,bm),

representing some attribute b over time t .
If the relation between t and b is explained by a linear relationship
then it makes sense to search for constants α0 ∈ R and α1 ∈ R
such that

bk ≈ α0 +α1tk .

Find α0 and α1 minimizing the sum of squares of the errors

min
α0,α1

m

∑
k=1

(bk − [α0 +α1tk ])
2 .
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An explicit formula under one assumption.

In matrix-vector notation

min
α0,α1

∥∥∥∥b−A
[

α0
α1

]∥∥∥∥2

, (1)

where

b =


b1
b2
...

bm−1
bm

 and A =


1 t1
1 t2
...

...
1 tm−1
1 tm

 .

If A has independent columns, the solution is

[
α0
α1

]
= (A⊤A)−1A⊤b =

[
m ∑

m
k=1 tk

∑
m
k=1 tk ∑

m
k=1 t2

k

]−1[
∑

m
k=1 bk

∑
m
k=1 tkbk

]
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We can assume that A has independent columns

Lemma

The columns of the m×2 matrix A defined before are linearly
dependent if and only if ti = tj for all i ̸= j .

Proof.
Suppose that there are two indices i ̸= j such that ti ̸= tj . Let 1 be
the all ones-vector in Rm and t the vector with components
t1, . . . , tm.
Consider the system in variables λ ,µ

λ1+µt = 0.

Since ti ̸= tj we can subtract row j from row i to obtain

λ0+µ(ti − tj) = 0 ⇐⇒ µ = 0 since ti − tj ̸= 0.

This implies that λ = 0 and hence A has full column rank.
If ti = tj for all i ̸= j , then t = t11, i.e., the second column is a
multiple of the first.
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Fitting a parabola: work it out!

If we believe the relationship between tk and bk is quadratic we
could attempt to fit a parabola:

bk ≈ α0 +α1tk +α2t2
k .

This is a linear function in α0, α1, and α2. Similarly as with linear
regression, it is natural to attempt to minimze

min
α0,α1,α2

∥∥∥∥∥∥b−A

 α0
α1
α2

∥∥∥∥∥∥
2

. (2)

b =


b1
b2
...

bm−1
bm

 and A =


1 t1 t2

1
1 t2 t2

2
...

...
1 tm−1 t2

m−1
1 tm t2

m

 .
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Orthonormal vectors

Definition (Orthonormal vectors)
q1, . . . ,qn ∈ Rm are orthonormal if they are orthogonal and have norm
1, i.e.,

qT
i qj = δij =

{
0 if i ̸= j
1 if i = j .

,

where δij is the Kronecker delta.

Remark and example
If Q is the matrix whose columns are the vectors qi ’s, then the
condition that the vectors are orthonormal can be rewritten as
Q⊤Q = I.
Q may not be a square matrix, and so it is not necessarily the
case that QQ⊤ = I.
A classical example of an orthonormal set of vectors is the
canonical basis, e1, . . . ,en ∈ Rn where ei is the vector with a 1 in
the i-th entry and 0 in all other entries, i.e., (ei)j = δij .Robert Weismantel November 8, 2024 12 / 16



Orthogonal matrices

Definition (Orthogonal matrix)

A square matrix Q ∈ Rn×n is an orthogonal matrix when Q⊤Q = I. In
this case, QQ⊤ = I, Q−1 = Q⊤, and the columns of Q form an
orthonormal basis for Rn.

Example
The 2×2 matrix Q that corresponds to rotating, counterclockwise, the
plane by θ ,

Rθ =

[
cosθ −sinθ

sinθ cosθ

]
is an orthogonal matrix. Indeed,

RT
θ Rθ =

[
cosθ sinθ

−sinθ cosθ

][
cosθ −sinθ

sinθ cosθ

]
= I.
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Permutation matrices are orthogonal matrices

Definition
A permutation is a bijective map

π : {1, . . . ,n} 7→ {1, . . . ,n}, i.e., π(i) ̸= π(j) for i ̸= j .

The permutation matrix A ∈ Rn×n associated with π has entries Aij = 1
if π(i) = j and Aij = 0, otherwise.

Example
Permutation matrices are another example of orthogonal matrices.
Indeed, AT is the permutation matrix associated with the permutation
σ defined as σ(j) = i whenever π(i) = j . Hence, AT A = I, i.e., A is an
orthogonal matrix.

Challenge
For every permutation matrix A there exists a positive integer k such
that Ak = I.Robert Weismantel November 8, 2024 14 / 16



A first observation about orthogonal matrices

Proposition
Orthogonal matrices preserve norm and inner product of vectors. In
other words, if Q ∈ Rn×n is orthogonal then, for all x ,y ∈ Rn

∥Qx∥= ∥x∥ and (Qx)⊤(Qy) = x⊤y

Proof of the second inequality.

For x ,y ∈ Rn, (Qx)⊤(Qy) = x⊤Q⊤Qy = x⊤Iy = x⊤y .

Proof of the first equality.
For x ∈ Rn we have that ∥Qx∥ ≥ 0 and ∥x∥ ≥ 0. Then

∥Qx∥2 = (Qx)⊤(Qx) = x⊤x = ∥x∥2 ⇒ ∥Qx∥= ∥x∥.
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Projections with Orthonormal Basis

The message here
An access to an orthonormal basis simplifies calculations for
projections.

Observation
Let S be a subspace of Rm and q1, . . . ,qn an orthonormal basis for S.
Let

Q =
[

q1 , · · · , qn
]
∈ Rm×n.

The projection matrix that projects to S is given by QQ⊤ and the least
squares solution attaining minx∈Rn ∥Qx −b∥2 is given by x̂ = Q⊤b.

Remark
When Q is square then QQ⊤ is simply the identity corresponding to
projecting to Rn. For x ∈ Rn it writes it a linear combination of the
orthonormal basis.

x = q1

(
q⊤

1 x
)
+q2

(
q⊤

2 x
)
+ · · ·+qn

(
q⊤

n x
)
.
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