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There will be no hand-in for this assignment. Solutions will be published on December 22.

Exercises

1. A positive semidefinite matrix (in-class)
(
⋆⋆⋆

)
Let n ∈ N+ and let S ∈ Rn×n such that S⊤ = −S. Prove that −S2 is symmetric and positive
semidefinite.

2. A positive definite matrix
(
⋆⋆⋆

)
Let n ∈ N+ be arbitrary and consider the matrix A ∈ Rn×n defined as

A := (n− 1)I +B

where I ∈ Rn×n is the identity matrix and B ∈ Rn×n satisfies Bij = 1 for all i, j ∈ {1, 2, . . . , n}
(i.e. all entries of B are 1). Prove that A is positive definite.

3. Diagonally dominant matrix
(
⋆⋆⋆

)
A matrix A ∈ Rn×n is called diagonally dominant if for every row of the matrix, the absolute
value of the diagonal entry in a row is at least the sum of the absolute values of all the other
(off-diagonal) entries in that row, i.e.,

|Aii| ≥
n∑

j=1
j ̸=i

|Aij | ∀i ∈ {1, . . . , n}

Show that a symmetric diagonally dominant matrix A ∈ Rn×n with non-negative diagonal entries
is positive semidefinite.

4. Positive (semi-)definite matrices
(
⋆⋆⋆

)
Let A,B ∈ Rn×n be two symmetric matrices. Let λ(A)

min ∈ R be the smallest eigenvalue of A,
let λ(B)

min ∈ R be the smallest eigenvalue of B, and let λ(A+B)
min ∈ R be the smallest eigenvalue of

A+B.

a) Prove that λ(A+B)
min ≥ λ

(A)
min + λ

(B)
min.

b) Assume that both A and B are positive semidefinite. Prove that A+B is positive semidefinite.

c) Assume that both A and B are positive definite. Prove that A+B is positive definite.
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5. Pseudoinverse via SVD
(
⋆⋆⋆

)
Let A ∈ Rm×n be a matrix of rank r with singular value decomposition (SVD) A = UrΣrV

⊤
r

with Ur ∈ Rm×r, Σr ∈ Rr×r, and Vr ∈ Rn×r. Recall that A has a pseudoinverse A†. Note that
Σr is invertible since it is a square diagonal matrix with non-zero entries on its diagonal. Prove
that A† = VrΣ

−1
r U⊤

r .

6. Least squares via SVD
(
⋆⋆⋆

)
In this task, we derive the solution of the least squares method using the singular value decompo-
sition. Let A ∈ Rm×n with rank(A) = r and b ∈ Rm be arbitrary. Let A = UΣV ⊤ be an SVD
of A with U ∈ Rm×m, Σ ∈ Rm×n, and V ∈ Rn×n. Consider the least squares problem

argmin
x∈Rn

∥Ax− b∥22. (1)

a) Let c = U⊤b. Prove that min
x∈Rn

∥Ax− b∥22 = min
y∈Rn

∥Σy − c∥22.

b) Let σ1 ≥ · · · ≥ σr denote the non-zero singular values of A (r is the rank of A). In
particular, we have Σii = σi for all i ∈ [r]. Find a formula for the optimal solution y∗ =

argmin
y∈Rn

∥Σy − c∥22 in terms of σ1, . . . , σr and c =
[
c1 c2 . . . cm

]⊤.

c) Let x∗ be the optimal solution x∗ = argmin
x∈Rn

∥Ax − b∥22. Given the optimal solution y∗ =

argmin
y∈Rn

∥Σy − c∥22 and the SVD of A, how can you compute x∗?
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