Assignment 4

Submission Deadline: 21 October, 2025 at 23:59

Course Website: https://ti.inf.ethz.ch/ew/courses/LA25/index.html

Exercises

Robert Weismantel

You can get feedback from your TA for Exercise 3 by handing in your solution as pdf via Moodle before the deadline.

1. Matrix multiplication with vectors and covectors (in-class) (★☆☆)

Let
$$n \in \mathbb{N}$$
. Consider $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ given by $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ \vdots \\ n \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} 2 \\ 2 \\ \vdots \\ 2 \end{pmatrix}$.

- a) Compute $\mathbf{v}^{\top}\mathbf{w}$ for all $n \in \mathbb{N}$.
- **b)** Compute $\mathbf{v}\mathbf{w}^{\top}$ when n=4.
- c) Compute $\mathbf{w}^{\top}(\mathbf{v}\mathbf{w}^{\top})\mathbf{v}$ for all $n \in \mathbb{N}$.

2. Exercise 2.47 (in-class) (★☆☆)

Let $A \in \mathbb{R}^{m \times n}$ of rank r and $C \in \mathbb{R}^{m \times r}$ and $R' \in \mathbb{R}^{r \times n}$ be the matrices in the CR-decomposition of A as given in Theorem 2.46.

- a) Suppose r = n. What are the matrices C and R'?
- **b)** Suppose r = 0. What are the matrices C and R'?

3. Matrix multiplication and invertibility (hand-in) (★★☆)

Let $A, B, C \in \mathbb{R}^{m \times m}$ such that BA = CA.

- a) Suppose that A is invertible. Show that B = C.
- **b)** Is it true that AB = AC? Give either a proof or a counterexample.
- c) Suppose that B-C is invertible. Show that A=0.

4. Special matrix inverses (★★☆)

a) What is the inverse
$$A^{-1}$$
 of the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$?

- **b)** What is the inverse D^{-1} of the diagonal matrix $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \frac{2}{3} \end{bmatrix}$?
- c) What is the inverse B^{-1} of the matrix $B = \begin{bmatrix} 0 & 0 & 2 \\ 3 & 0 & 0 \\ 0 & \frac{2}{3} & 0 \end{bmatrix}$?

Hint: Try to undo the matrix transformations T_A, T_B, T_D , i.e., find their inverses and the corresponding matrices.

5. Inverses of matrix powers $(\bigstar \bigstar \grave{\Rightarrow})$

- a) Let A be an $m \times m$ matrix with inverse A^{-1} and let $k \in \mathbb{N}^+$ be an arbitrary integer. Does A^k have an inverse and if yes, what is it?
- **b)** Recall the definition of a nilpotent matrix: We say that a square matrix A is nilpotent if and only if there exists $k \in \mathbb{N}$ such that $A^k = 0$. Prove that a nilpotent matrix A cannot have an inverse.
- c) Let A be an $m \times m$ matrix with $A^3 = I$ and $A^4 = I$. Prove that A = I.
- **d)** Find a 2×2 matrix $A \neq I$ such that $A^k = I$ for all even k and $A^k = A$ for all odd $k \in \mathbb{N}$.
- e) Can you also find a 2×2 matrix A that, for all $k \in \mathbb{N}$, satisfies $A^k = I$ if and only if $k \equiv_4 0$ (i.e. $A^k = I$ if and only if k is a multiple of 4)?

6. Inverse of triangular matrices (★★★)

- a) Find the inverse of the 2×2 matrix $L=\begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix}$ where $a\in\mathbb{R}.$
- **b)** Prove that a square lower triangular matrix is invertible if and only if all its diagonal entries are non-zero.
- c) Prove that the inverse of any lower triangular matrix, if it exists, is lower triangular itself.
- **d**) Are the statements of b) and c) also true if we replace *lower triangular* by *upper triangular*?