
Robert Weismantel

Summary Lecture 27 and 28:
Positive semidefinite matrices and
the singular value decomposition



Preparations

The spectral theorem: Let A be a real n×n symmetric matrix
Let v1, . . . ,vn be an orthonormal basis of eigenvectors of A and λ1, . . . ,λn the
associated eigenvalues. Then A = ∑

n
i=1 λiviv⊤

i

Proposition 9.2.10
Let A ∈ Rn×n be symmetric. The Rayleigh Quotient, defined for x ∈ Rn \{0},
as

For x ∈ Rn \{0}, let R(x) =
x⊤Ax
x⊤x

.

R attains its maximum at R(vmax) = λmax and its minimum at R(vmin) = λmin

where λmax and λmin are the largest and smallest eigenvalues of A and vmax,
vmin their associated eigenvectors.

Definition 9.2.11
A symmetric matrix A ∈ Rn×n is said to be Positive Semidefinite / Positive
Definite (PSD / PD) if all its eigenvalues are non-negative / positive.
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Results about positive semidefinite matrices

Proposition 9.2.12
A symmetric matrix A ∈ Rn×n is PSD if and only if x⊤Ax ≥ 0 for all x ∈ Rn.
A symmetric matrix A ∈ Rn×n is PD if and only if x⊤Ax > 0 for all x ∈ Rn \{0}.

Definition (Gram Matrix)
Given n vectors, v1, . . . ,vn in Rm, let V ∈ Rm×n be the matrix with columns vi .
The Gram Matrix of V is the n×n matrix G = V⊤V .

Proposition 9.2.15
Let A ∈ Rm×n. The non-zero eigenvalues of A⊤A ∈ Rn×n are the same as the
ones of AA⊤ ∈ Rm×m. Both matrices are also symmetric and PSD.

Proposition 9.2.16
Every symmetric positive semidefinite matrix M is a Gram matrix of an upper
triangular matrix C. M = C⊤C is known as the Cholesky Decomposition.
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A sort of spectral theorem for general matrices?

Definition 9.3.1
Let A ∈ Rm×n. A singular value decomposition of A consists of orthogonal
matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV⊤, (1)

where Σ ∈ Rm×n is a diagonal matrix, U⊤U = I and V⊤V = I.
The columns of U (V ) are the left (right) singular vectors of A. The diagonal
elements of Σ, σi =Σii are called the singular values of A and are ordered as

σ1 ≥ ·· · ≥ σmin{m,n} ≥ 0.

Remark 9.3.2
If A has rank r we can write compactly A = UrΣr V⊤

r , where Ur ∈ Rm×r

contains the first r left singular vectors, Vr ∈ Rn×r contains the first r right
singular vectors and Σr ∈ Rr×r is diagonal with the first r singular values.
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The SVD theorem?

The important idea
We will use the spectral theorem applied to the symmetric matrices A⊤A and
AA⊤. The singular values and vectors of A are in relation with eigenvalues
and eigenvectors of these matrices.

Theorem (The SVD Theorem)
Every matrix A ∈ Rm×n has an SVD decomposition of the form (1).

In other words:
Every linear transformation is diagonal when viewed in the bases of the

singular vectors.
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Consequence of the SVD

Proposition 9.3.4
A rank-r matrix is a sum of r rank-1 matrices. Let A ∈ Rm×n be a matrix of
rank r . Let σ1, . . . ,σr be the non-zero singular values of A with left and right
vectors u1, . . . ,ur , v1, . . . ,vr , respectively. Then

A =
r

∑
k=1

σk uk v⊤
k . (2)

Final remarks
The SVD is a powerful tool. Many results presented in this course
become significantly simpler with the SVD.
For instance, if A is invertible and A has SVD A = UΣV⊤, then A−1 has
SVD A−1 = VΣ−1U⊤.
Similarly, one can define the Moore-Penrose Pseudoinverse by using the
SVD.
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