Linear Algebra ETH Zürich, HS 2025, 401-0131-00L

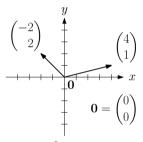
Vector Spaces

Bernd Gärtner

October 20, 2025

So far (Definition 1.1):

"A vector is an element of \mathbb{R}^m ."



vectors in \mathbb{R}^2 , drawn as arrows

The truth:

- There are also other kinds of vectors.
- "...an element of \mathbb{R}^{m} " was actually a white lie.

What "the Internet" thinks a vector is

Oxford Languages:

a quantity having direction as well as magnitude, especially as determining the position of one point in space relative to another.

Chat GPT:

A vector is a mathematical object that has both magnitude and direction. You can think of it as a an arrow. [...]

Wikipedia:1.

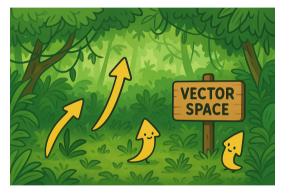
In mathematics and physics, vector is a term that refers to quantities that cannot be expressed by a single number (a scalar), or to elements of some vector spaces.

 $^{^{1}}$ https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics), accessed on October 16, 2025

The only defininition that always works

A vector is an element of a vector space.

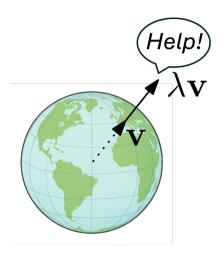
Vector space: a "natural habitat" for vectors . . .



...in which they can safely pursue their natural behavior:

- ightharpoonup add up $(\mathbf{v} + \mathbf{w})$
- ightharpoonup scale $(\lambda \mathbf{v})$

Not every habitat is safe for vectors...



Vector space, informally

A vector space is a set together with two operations: vector addition $\mathbf{v} + \mathbf{w}$ and scalar multiplication $\lambda \cdot \mathbf{v}$, each producing another element of the vector space.

These operations have to follow some rules (details will follow).

Example

The vector space of polynomials $(x^2 + x + 1, 3x^3, 5x - 2, ...)$.

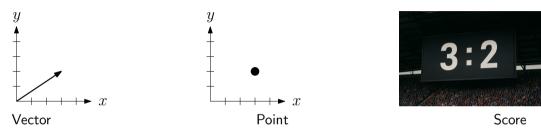
$$(x^2 + x + 1) + (5x - 2) = x^2 + 6x - 1$$

$$\triangleright$$
 5 · $(x^2 + x + 1) = 5x^2 + 5x + 5$

Here, the vectors are polynomials, no "magnitude" or "direction" is apparent.

The white lie: \mathbb{R}^m is *not* a vector space. . .

 \mathbb{R}^2 just contains "raw" pairs of numbers such as (3,2). The *meaning* can vary.



The truth: $(\mathbb{R}^2, +, \cdot)$ is the vector space: this is \mathbb{R}^2 together with the standard vector addition (+) and scalar multiplication (\cdot) from Definitions 1.2 and 1.3.

For that vector space, we use arrow drawings and column vector notation $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Calling this vector space \mathbb{R}^2 is a typical and acceptable abuse of notation.

Real vector spaces, formally

A real vector space² is a triple $(V, +, \cdot)$ where V is a set (the vectors), and

+ : $V \times V \rightarrow V$ a function (vector addition), \cdot : $\mathbb{R} \times V \rightarrow V$ a function (scalar multiplication),

satisfying the following axioms (rules) for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all $\lambda, \mu \in \mathbb{R}$.

don't learn them by heart! 1. v + w = w + vcommutativity 2. u + (v + w) = (u + v) + wassociativity 3. There is a vector $\mathbf{0}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all \mathbf{v} zero vector 4. There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$ negative vector 5. $1 \cdot \mathbf{v} = \mathbf{v}$ identity element 6. $(\lambda \cdot \mu)\mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v})$ compatibility of \cdot and \cdot in \mathbb{R} 7. $\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$ distributivity over + 8. $(\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}$ distributivity over + in \mathbb{R}

 $^{^2}$ "real" stands for real numbers $\lambda \in \mathbb{R}$ as scalars

Example: The vector space of polynomials

Polynomial (of degree m): formal sum of the form $\mathbf{p} = \sum_{i=0}^{m} p_i x^i, p_m \neq 0$

$$V$$
: all polynomials $x^2 + x + 1, 3x^3, 5x - 2, \dots$

+ : vector addition
$$(x^2 + x + 1) + (5x - 2) = x^2 + 6x - 1$$

$$\cdot$$
 : scalar multiplication $5 \cdot (x^2 + x + 1) = 5x^2 + 5x + 5$

Vector space axioms: easy (and boring) to check...

1.
$$v + w = w + v$$

2.
$$u + (v + w) = (u + v) + w$$

- 3. There is a vector $\mathbf{0}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all \mathbf{v}
- 4. There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$

5.
$$1 \cdot \mathbf{v} = \mathbf{v}$$

6.
$$(\lambda \cdot \mu)\mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v})$$

7.
$$\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$$

8.
$$(\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}$$

the zero polynomial (degree m=-1)

Yet another real vector space

Theorem 4.5: Let $\mathbb{R}^{m \times n}$ be the set of $m \times n$ matrices, with addition A + B and scalar multiplication λA defined in the usual way, see Definition 2.2. Then $(\mathbb{R}^{m \times n}, +, \cdot)$ is a vector space.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}, \quad 2 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}.$$

Let's prove some "obvious" facts about real vector spaces (I)

Vector space axioms:

- 1. v + w = w + v
- 2. u + (v + w) = (u + v) + w
- 3. There is a vector $\mathbf{0}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all \mathbf{v}
- 4. There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- 5. $1 \cdot \mathbf{v} = \mathbf{v}$
- 6. $(\lambda \cdot \mu)\mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v})$
- 7. $\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$
- 8. $(\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}$

Lemma

There is only one zero vector.

Proof.

Take two zero vectors $\mathbf{0}$ and $\mathbf{0}'$. Then

$$\mathbf{0'} = \mathbf{0'} + \mathbf{0}$$
 (3. $\mathbf{0}$ is a zero vector)
= $\mathbf{0} + \mathbf{0'}$ (1. commutativity)
= $\mathbf{0}$ (3. $\mathbf{0'}$ is a zero vector)

So
$$\mathbf{0}$$
 and $\mathbf{0}'$ are equal.

Let's prove some "obvious" facts about real vector spaces (II)

Vector space axioms:

- 1. v + w = w + v
- 2. u + (v + w) = (u + v) + w
- 3. There is a vector $\mathbf{0}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all \mathbf{v}
- 4. There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- 5. $1 \cdot \mathbf{v} = \mathbf{v}$
- 6. $(\lambda \cdot \mu)\mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v})$
- 7. $\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$
- 8. $(\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}$

Lemma

For every vector \mathbf{v} , we have $0 \cdot \mathbf{v} = \mathbf{0}$.

Proof.

$$\begin{array}{lll}
\mathbf{0}\mathbf{v} \\
= & 0\mathbf{v} + \mathbf{0} \\
= & 0\mathbf{v} + (0\mathbf{v} + (-0\mathbf{v})) & (4. \text{ negative}) \\
= & (0\mathbf{v} + 0\mathbf{v}) + (-0\mathbf{v}) & (2. \text{ associativity}) \\
= & (0+0)\mathbf{v} + (-0\mathbf{v}) & (8. \text{ distributivity } +) \\
= & 0\mathbf{v} + (-0\mathbf{v}) & (\text{rules of } \mathbb{R}) \\
= & \mathbf{0} & (4. \text{ negative})
\end{array}$$

Let's prove some "obvious" facts about real vector spaces (III)

Vector space axioms:

- 1. v + w = w + v
- 2. u + (v + w) = (u + v) + w
- 3. There is a vector $\mathbf{0}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all \mathbf{v}
- 4. There is a vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- 5. $1 \cdot \mathbf{v} = \mathbf{v}$
- 6. $(\lambda \cdot \mu)\mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v})$
- 7. $\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$
- 8. $(\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}$

Lemma

Each **v** has only one negative vector.

Proof.

Take two negative vectors \mathbf{u} and \mathbf{u}' of \mathbf{v} . Then

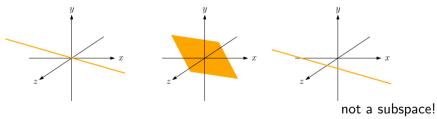
So \mathbf{u} and \mathbf{u}' are equal.

Subspaces

Definition 4.8: Let V be a vector space. A nonempty subset $U \subseteq V$ is called a *subspace* of V if the following two *axioms of a subspace* are true for all $\mathbf{v}, \mathbf{w} \in U$ and all $\lambda \in \mathbb{R}$.

- (i) $\mathbf{v} + \mathbf{w} \in U$;
- (ii) $\lambda \mathbf{v} \in U$.

Subspace: natural "sub-habitat" in a bigger habitat V



Lemma 4.9: Let $U \subseteq V$ be a subspace of a vector space V. Then $\mathbf{0} \in U$.

Proof. Take $\mathbf{u} \in U$ (U is nonempty). By (ii), $0\mathbf{u} = \mathbf{0} \in U$.

Subspace examples: column Space, row Space, nullspace

Lemma 4.11: Let A be an $m \times n$ matrix. The column space $\mathbf{C}(A) = \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\}$ is a subspace of \mathbb{R}^m .

Proof.

Let \mathbf{v}, \mathbf{w} be in $\mathbf{C}(A)$. Then there exist vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{v} = A\mathbf{x}, \mathbf{w} = A\mathbf{y}$. Hence,

$$A(\underbrace{\mathbf{x}+\mathbf{y}}_{\in\mathbb{R}^n})=A\mathbf{x}+A\mathbf{y}=\mathbf{v}+\mathbf{w}\quad\Rightarrow\quad\mathbf{v}+\mathbf{w}\in\mathbf{C}(A).$$

This was subspace axiom (i). For axiom (ii), let $\lambda \in \mathbb{R}$. Then

$$A(\underbrace{\lambda \mathbf{x}}_{\in \mathbb{R}^n}) = \lambda A \mathbf{x} = \lambda \mathbf{v} \quad \Rightarrow \quad \lambda \mathbf{v} \in \mathbf{C}(A).$$

Uses linearity of matrix transformations (Lemma 2.19).

Row space $\mathbf{R}(A)$ and nullspace $\mathbf{N}(A)$ are also subspaces (Corollary 4.12, Exercise 4.13).

Subspaces are vector spaces

Lemma 4.14: Let V be a vector space, and let U be a subspace of V. Then U is also a vector space (with the same "+" and "·" as V).

Proof.

The only interesting step: make sure that for all $\mathbf{u} \in U$, $-\mathbf{u} \in U$ (axiom 4).

So far we only know $-\mathbf{u} \in V$.

But $-\mathbf{u} \in U$ also holds, since $(-1)\mathbf{u} \in U$ by subspace axiom (ii)...

...and "obviously"
$$(-1)\mathbf{u} = -\mathbf{u}$$
.

More subspace examples: Polynomials

V =all polynomials

▶ $U = \text{all polynomials without a constant term (for example } 3x^3 + 5x)$:

$$\mathbf{p} = \sum_{i=1}^{m} p_i x^i$$

▶ $U = \text{all quadratic polynomials (for example } 5x^2 + 2x + 7 \text{ or } 2x - 6)$:

$$\mathbf{p} = p_0 + p_1 x + p_2 x^2$$

This subspace looks a lot like (is *isomorphic* to) \mathbb{R}^3 : all (p_0, p_1, p_2) .

See Section 4.2.5 for isomorphic vector spaces.

More subspace examples: 2×2 Matrices

$$V = \mathbb{R}^{2 \times 2}$$
 (isomorphic to \mathbb{R}^4)

ightharpoonup U =all symmetric matrices:

$$A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$

ightharpoonup U = all matrices of trace 0:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, where $a + d = 0$.

ightharpoonup U = all matrices with nonnegative entries?

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, where $a, b, c, d \ge 0$.

Not a subspace: $(-1)A \notin U$, violation of axiom (ii).