

Special Exercises

Regulations:

- There will be a total of four special exercise sets during this semester.
- You are expected to solve them carefully and then write a nice and complete exposition of your solutions using LaTeX.
- You are welcome to discuss the tasks with your colleagues, but we expect each of you to hand in your own, individual writeup.
- Your solutions will be graded. The three highest out of your four achieved grades will account for 10% of your final grade for the course each (so 30% of the grade in total).

Special Exercise Set 1

Due date: Friday, October 17, 2008 (at the beginning of the 10 o'clock lecture)

Problem 1

Only double conflicts

Let F be a CNF formula such that every pair of clauses $C, D \in F$ either have no complementary literals, or at least two pairs of complementary literals, but never exactly one, i.e. using the notation

$$\bar{C} := \{ \bar{u} \mid u \in C \}$$

we have

$$\forall C, D \in F : |C \cap \bar{D}| \neq 1.$$

- Prove that F is satisfiable.
- Exhibit a polynomial-time algorithm that finds a satisfying assignment for such a formula.

Problem 2

Check-free Chess Board

You are given a list of chess pieces, e.g. $[k$ kings, q queens, r rooks, b bishops, g knights], with $k, q, r, b, g \in \mathbb{N}$. For simplicity, we do not allow any pawns in the list (due to the special capturing rules that apply for them). You would like to position all the pieces on a board of size $n \times n$ in such a way that

- (i) no two pieces are on the same field and
- (ii) no piece can capture another piece.

Note that we disregard the colours of the pieces in this problem. Finding a solution is not an easy task, but perhaps you can create a CNF formula out of it which is satisfiable if and only if your task has a solution.

- a. Give a (high-level) description of how an algorithm could construct a CNF formula for the problem in polynomial time.
- b. Argue why your solution is correct and how a satisfying assignment reveals a solution for the original task.
- c. Describe the 'metrics' of the formulas your algorithm produces, e.g. the number of variables, the number of clauses and the sizes of the clauses.

Problem 3

NAE-Satisfiability

A CNF formula F is said to be *Not-All-Equal satisfiable*, or *NAE-satisfiable* for short, if there exists an assignment for it such that in every clause, at least one literal evaluates to true and at least one literal evaluates to false.

- a. Give a 2-CNF with 2 clauses that is not NAE-satisfiable (and demonstrate that it really isn't!).
- b. Give a 3-CNF with 4 clauses that is not NAE-satisfiable (and demonstrate that it really isn't!).
- c. Show that every k -CNF with less than 2^{k-1} clauses is NAE-satisfiable.
- d. Show that for every k , there exists a k -CNF formula with 2^{k-1} clauses which is not NAE-satisfiable.

Problem 4

Derandomizing the Local Lemma

Let F be a k -CNF formula of the form we require in Theorem 2*.1 and $V := \text{vbl}(F)$ its variable set. Let $m := |F|$. Recall the various definitions concerning witness trees in Chapter 2*.

- a. Show: for every witness tree T for F we can exhibit a clause C_T over V such that T is consistent with an assignment $\alpha \in \{0, 1\}^V$ if and only if C_T is violated. What is the size of such a clause?
- b. Let $u > k$ be any fixed number. Prove: if there exists a witness tree T of size at least u for F which expands and is consistent with a given $\alpha \in \{0, 1\}^V$, then there exists also a witness tree T' of a size in the range $[u, (k+1)u]$ that expands as well and is equally consistent with α .

HINT: As you would expect, T' is a subtree of T . Use reductio ad absurdum: assume the claim is wrong for some fixed value u and then assume that T is the smallest counterexample to the claim, so the smallest tree larger than u but such that no (expanding, consistent,...) subtree of a size in the range between u and $(k+1)u$ exists. Then derive a contradiction.

- c. Prove: there exists a list containing polynomially (in the size of F) many witness trees, each of them being of polynomial size, such that if for a given assignment α , all the witness trees in the list are non-consistent with α , then $F^{[\alpha_p]}$ consists of small components exclusively, where 'small' is defined along the same lines as in the script, i.e. $\text{lcs}(F^{[\alpha_p]}) < c \log(m)$ for some constant c .

HINT: Use b.

- d. Prove: the randomized algorithm presented in Chapter 2* can be derandomized, i.e. there is a deterministic polynomial-time algorithm that finds a satisfying assignment to any F which has

$$\forall C \in F : |\Gamma_F(C)| \leq 2^{k/2-6}.$$

HINT: Use a, c and at some point Theorem 2.2.