Satisfiability of Boolean Formulas - Combinatorics and Algorithms
Autumn 2008

Special Exercises

Regulations:

There will be a total of four special exercise sets during this semester.

You are expected to solve them carefully and then write a nice and
complete exposition of your solutions using LaTeX.

You are welcome to discuss the tasks with your colleagues, but we
expect each of you to hand in your own, individual writeup.

Your solutions will be graded. The three highest out of your four
achieved grades will account for 10% of your final grade for the course
each (so 30% of the grade in total).

Special Exercise Set 1

Due date: Friday, October 17, 2008 (at the beginning of the 10 o’clock lecture)

Problem 1 Only double conflicts

Let F be a CNF formula such that every pair of clauses C, D € F either have
no complementary literals, or at least two pairs of complementary literals,
but never exactly one, i.e. using the notation

C={tu|luecC)

we have

a.

b.

VC,DEF:|ICND|#1.
Prove that F is satisfiable.

Exhibit a polynomial-time algorithm that finds a satisfying assign-
ment for such a formula.

Problem 2 Check-free Chess Board

You are given a list of chess pieces, e.g. [k kings, q queens, T rooks, b bi-
shops, g knights], with k, g, r,b, g € N. For simplicity, we do not allow any
pawns in the list (due to the special capturing rules that apply for them).
You would like to position all the pieces on a board of size n x n in such a
way that

(i) no two pieces are on the same field and

(ii) no piece can capture another piece.

Note that we disregard the colours of the pieces in this problem. Finding
a solution is not an easy task, but perhaps you can create a CNF formula
out of it which is satisfiable if and only if your task has a solution.

a. Give a (high-level) description of how an algorithm could construct a
CNF formula for the problem in polynomial time.

b. Argue why your solution is correct and how a satisfying assignment
reveals a solution for the original task.

c. Describe the 'metrics’ of the formulas your algorithm produces, e.g.
the number of variables, the number of clauses and the sizes of the
clauses.

Problem 3 NAE-Satisfiability

A CNF formula F is said to be Not-All-Equal satisfiable, or NA E-satisfiable
for short, if there exists an assignment for it such that in every clause, at
least one literal evaluates to true and at least one literal evaluates to false.

a. Give a 2-CNF with 2 clauses that is not NAE-satisfiable
(and demonstrate that it really isn’t!).

b. Give a 3-CNF with 4 clauses that is not NAE-satisfiable
(and demonstrate that it really isn’t!).

¢. Show that every k-CNF with less than 2% 1 clauses is NAE-satisfiable.

d. Show that for every k, there exists a k-CNF formula with 27" clauses
which is not NAE-satisfiable.

Problem 4 Derandomizing the Local Lemma

Let F be a k-CNF formula of the form we require in Theorem 2*.1 and
V := vbl(F) its variable set. Let m := [F|. Recall the various definitions
concerning witness trees in Chapter 2*.

a. Show: for every witness tree T for F we can exhibit a clause Cy over
V such that T is consistent with an assignment o« € {0, 1}V if and only
if Ct is violated. What is the size of such a clause?

b. Let u > k be any fixed number. Prove: if there exists a witness tree
T of size at least u for F which expands and is consistent with a given
o € {0,1}Y, then there exists also a witness tree T’ of a size in the
range [u, (k+ 1)u] that expands as well and is equally consistent with
x.
HINT: As you would expect, T’ is a subtree of T. Use reductio ad absurdum:
assume the claim is wrong for some fixed value u and then assume that T
is the smallest counterexample to the claim, so the smallest tree larger than
u but such that no (expanding, consistent,...) subtree of a size in the range
between u and (k + 1)u exists. Then derive a contradiction.

c. Prove: there exists a list containing polynomially (in the size of
F) many witness trees, each of them being of polynomial size, such
that if for a given assignment «, all the witness trees in the list are
non-consistent with «, then Fl*! consists of small components exclu-
sively, where 'small’ is defined along the same lines as in the script,
i.e. lcs(Fl*!) < clog(m) for some constant c.

HinT: Use b.

d. Prove: the randomized algorithm presented in Chapter 2* can be
derandomized, i.e. there is a deterministic polynomial-time algorithm
that finds a satisfying assignment to any F which has

VC € F:|TE(C)| < 2F/278,

HINT: Use a, c and at some point Theorem 2.2.

