

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science Patrick Schnider

Introduction to	o Topological	Data Analysis	Scribe Notes 1	HS22
millouuction it	, iopological	Dutu Analysis		11522

Scribe notes by Simon Weber. Please contact me for corrections. Lecture date: February 23, 2023 Last update: February 23, 2023

A first introduction into topology

Definition 1. A topological space (X, T) is a set of points X, with a system T of subsets of X (called the topology on X), such that

- 1. $\emptyset \in T$, $X \in T$.
- 2. For every $S \subseteq T$, $\bigcup S \in T$.
- 3. For every finite $S \subseteq T$, $\cap S \in T$.

The sets in T are called the open sets of X.

Example: $X = \mathbb{R}^2$, and T the collection of open subsets (in the geometric/calculus sense) of \mathbb{R}^2 .

Condition 3 requires the "finite": otherwise, a set $\{p\}$ consisting a single point $p \in \mathbb{R}^2$ would have to be considered to be open: it is the intersection of the infinite series of open balls of radius 1/n centered at p, for $n \in \mathbb{N}$.

Further examples: $(X, 2^{\chi})$, where 2^{χ} denotes the family of all subsets of X. This is called a *discrete topology*.

Definition 2. A set $Q \subseteq X$ is called closed, if its complement $X \setminus Q$ is open. The closure cl Q is the smallest closed set containing Q. The interior int Q is the union of all open subsets of Q. The boundary bnd Q is the set minus its interior: bnd $Q = Q \setminus int Q$.

Note that sets can be open and closed simultaneously: in every topological space (X, T), \emptyset and X are such examples. In a discrete topology, every subset $S \subseteq X$ is open and closed.