Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Institute of Theoretical Computer Science
Patrick Schnider

Introduction to Topological Data Analysis
Scribe Notes 2
HS22

Scribe notes by Simon Weber. Please contact me for corrections.
Lecture date: February 24, 2023
Last update: Friday $24^{\text {th }}$ February, 2023, 13:57

Topological Spaces, continued

Lemma 1. Let (X, T) be some topological space, and $\mathrm{Y} \subseteq \mathrm{X}$. Then, $\mathrm{U}:=\{\mathrm{A} \cap \mathrm{Y} \mid \mathrm{A} \in \mathrm{T}\}$ is a topology on Y . We call this a subspace topology.

Proof. We check the three conditions of a topology:

1. $\emptyset=\emptyset \cap Y$, therefore $\emptyset \in U$. Similarly, $Y=X \cap Y$, and thus $Y \in U$.
2. $\bigcup_{i \in I}\left(A_{i} \cap Y\right)=\left(\cup_{i \in I} A_{i}\right) \cap Y$, and thus $\bigcup_{i \in I}\left(A_{i} \cap Y\right) \in U$.
3. $\bigcap_{i=1}^{n}\left(A_{i} \cap Y\right)=\left(\bigcap_{i=1}^{n} A_{i}\right) \cap Y$, and thus $\bigcap_{i=1}^{n}\left(A_{i} \cap Y\right) \in U$.

Since we have seen that \mathbb{R}^{d} is a topological space, this already tells us that all subsets of \mathbb{R}^{d} are topological spaces.

Fact 2. Let X, Y be two topological spaces. Then, $\mathrm{X} \times \mathrm{Y}$ is a topological space, with the so-called product topology.

Definition 3. A topological space (X, T) is disconnected, if there are two disjoint nonempy open sets $\mathrm{U}, \mathrm{V} \in \mathrm{T}$, such that $\mathrm{X}=\mathrm{U} \cup \mathrm{V}$. A topological space is connected, if it is not disconnected.

Metric Spaces

Definition 4. A metric space (X, d) is a set X of points and a distance function d : $X \times X \rightarrow \mathbb{R}$ satisfying

1. $d(p, q)=0$ if and only if $p=q$.
2. $d(p, q)=d(q, p), \forall p, q \in X$.
3. $d(p, q) \leq d(p, s)+d(s, q), \forall p, q, s \in X$.
(Symmetry)
(Triangle inequality)
Note that these three conditions imply that $d(p, q) \geq 0$ for all $p, q \in X$: If some distance $d(p, q)$ would be negative, we would have $0=d(p, p) \leq d(p, q)+d(q, p)=2 \cdot d(p, q)<0$, a contradiction.

Fact 5. Every metric space has a topology (the metric space topology) given by the open metric balls $\mathrm{B}(\mathrm{c}, \mathrm{r})=\{\mathrm{p} \in \mathrm{X} \mid \mathrm{d}(\mathrm{p}, \mathrm{c})<\mathrm{r}\}$ and their unions.

Maps between topological spaces

Definition 6. A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous if for every open set $\mathrm{U} \subseteq \mathrm{Y}$, its pre-image $\mathrm{f}^{-1}(\mathrm{U}) \subseteq X$ (the set of all elements $\mathrm{x} \in \mathrm{X}$ such that $\mathrm{f}(\mathrm{x}) \in \mathrm{U}$) is open. Continuous functions are also called maps. If f is injective, it is called an embedding.

Examples:
For $X \subseteq Y$, we write $X \hookrightarrow Y$ for the function $f(x)=x, \forall x \in X$. This function, which is also called the inclusion map, is continuous: $\mathrm{f}^{-1}(\mathrm{U})=\mathrm{U} \cap \mathrm{X}$, which is open in the subspace topology on X.
For a function $f: \mathbb{R} \rightarrow \mathbb{R}$, continuity agrees with the " $\epsilon-\delta$ " definition of continuity from calculus.

Definition 7. A homeomorphism is a bijective map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ whose inverse is also continuous. Two topological spaces are homeomorphic, if there is a homeomorphism between them. We also write $\mathrm{X} \simeq \mathrm{Y}$ to say that X, Y are homeomorphic.

Examples:
The boundary of a tetrahedron is homeomorphic to the sphere S^{2}. Idea: Take a point c within the tetrahedron, and send each point p to the point $f(p)$ on the ray from c through p such that $d(c, f(p))=1$.
$I:=(-1,1)$ is homeomorphic to \mathbb{R}. The following map f is a homeomorphism: $f: I \rightarrow \mathbb{R}$, $x \mapsto \frac{x}{1-|x|}$. Its inverse is $\mathrm{f}^{-1}: \mathbb{R} \rightarrow \mathrm{I}, \mathrm{y} \mapsto \frac{y}{1+|y|}$.

All knots (embeddings of the circle into \mathbb{R}^{3}) are homeomorphic. Thus, we cannot distinguish between knots using only homeomorphism.

Figure 1: Two knots.

Definition 8. An isotopy connecting $\mathrm{X} \subseteq \mathbb{R}^{\mathrm{d}}$ and $\mathrm{Y} \subseteq \mathbb{R}^{\mathrm{d}}$ is a continous map ϕ : $\mathrm{X} \times[0,1] \rightarrow \mathbb{R}^{\mathrm{d}}$, such that $\phi(\mathrm{X}, 0)=\mathrm{X}, \phi(\mathrm{X}, 1)=\mathrm{Y}$, and $\forall \mathrm{t} \in[0,1], \phi(\cdot, \mathrm{t})$ is a homeomorphism between X and its image. Two spaces are called isotopic, if there is an isotopy connecting them.

Examples:
Let $X \subset \mathbb{R}$ be the union of 0 , and $[1,2]$, and let $Y \subset \mathbb{R}$ be the union of $[0,1]$ and 2 . These spaces are homeomorphic $(X \simeq Y)$, but not isotopic.
The two knots from Figure 1 above are also not isotopic.
We have also seen an isotopy between the two spaces in Figure 2, the isotopy is illustrated by the following video: https://www.youtube.com/watch?v=wDZx9B4TAXo

Figure 2: Left: Both handcuffs are connected to an infinite pole. Right: Only one loop of the handcuffs is connected to the infinite pole. These spaces are isotopic.

Definition 9. Let g , h be maps $\mathrm{X} \rightarrow \mathrm{Y}$. A homotopy connecting g and h is a map $\mathrm{H}: \mathrm{X} \times[0,1] \rightarrow \mathrm{Y}$ such that $\mathrm{H}(\cdot, 0)=\mathrm{g}$ and $\mathrm{H}(\cdot, 1)=\mathrm{h}$. In this case g and h are called homotopic.

Examples:
The inclusion map $g: \mathbb{B}^{3} \hookrightarrow \mathbb{R}^{3}$ (where \mathbb{B}^{3} is the unit ball in \mathbb{R}^{3}), and $h: \mathbb{B}^{3} \rightarrow \mathbb{R}^{3}$ which sends every point to the origin, are homotopic, as shown by the homotopy

$$
H(x, t)=(1-t) g(x)
$$

The identity function $g: S^{1} \rightarrow S^{1}$ and $h: S^{1} \rightarrow S^{1}$ which sends everything to a single point $p \in S^{1}$ are not homotopic.

Definition 10. Two spaces X, Y are homotopy equivalent if there exist maps $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{h}: \mathrm{Y} \rightarrow \mathrm{X}$ such that:

- $\mathrm{h} \circ \mathrm{g}$ is homotopic to id_{x} (the identity $\operatorname{map} \mathrm{x} \mapsto \mathrm{x}$), and
- $\mathrm{g} \circ \mathrm{h}$ is homotopic to id_{r}.

Example: The circle S^{1} and $\mathbb{R}^{2} \backslash\{0\}$ are homotopy equivalent. We pick g as the inlusion $\operatorname{map} S^{1} \hookrightarrow \mathbb{R}^{2} \backslash\{0\}$, and $h(x):=\frac{x}{|x|}$. We see that $h \circ g(x)=x$, i.e., $h \circ g=\operatorname{id}_{s^{1}}$. Furthermore, $g \circ h(x)=h(x)$. $g \circ h$ and $\operatorname{id}_{\mathbb{R}^{2} \backslash\{0\}}$ are homotopic as certified by the homotopy $\mathrm{H}(\mathrm{x}, \mathrm{t}):=\mathrm{t} x+(1-\mathrm{t}) \mathrm{h}(\mathrm{x})$.

This example shows us that homotopy equivalence is a somewhat weaker property than homeomorphism, since these two spaces do not even have the same dimension (and thus cannot be homeomorphic), but they are homotopy equivalent.

Definition 11. Let $A \subseteq X$. A deformation retract of X onto A is a map $R: X \times[0,1] \rightarrow X$, such that

- $R(\cdot, 0)=i d_{x}$
- $R(x, 1) \in A, \forall x \in X$
- $R(a, t)=a, \forall a \in A, t \in[0,1]$

If such a deformation retract of X onto A exists, we also say that A is a deformation retract of X .

The intuition behind a deformation retract is to continuously shrink X to A, while leaving A fixed.

Fact 12. If A is a deformation retract of X (there exists a deformation retract of X onto A), then A and X are homotopy equivalent.

Examples:
The circle S^{1} is a deformation retract of $\mathbb{R}^{2} \backslash\{0\}: R(x, t)=(1-t) x+t \cdot \frac{x}{|x|}$.
A punctured torus can be deformation retracted onto the symbol 8 where one of the two circles is rotated by 90 , as seen by the following video:
https://www.youtube.com/watch?v=tz3QWrfPQj4
Lemma 13. If X and Y are homeomorphic, they are also homotopy equivalent.
Proof. Let $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ be the homeomorphism, and $\mathrm{h}:=\mathrm{g}^{-1}$ its inverse. Then $\mathrm{g} \circ \mathrm{h}=\mathrm{id}_{Y}$ and $\mathrm{h} \circ \mathrm{g}=\mathrm{id}_{\mathrm{x}}$, and id is homotopic to itself.

Fact 14. X, Y are homotopy equivalent if and only if there exists a space Z such that X and Y are deformation retracts of Z .

An example of this fact can be found in Figure 3 below:

Figure 3: The top space deformation retracts to both spaces below, showing that they are homotopy equivalent.

We note that in general, showing existence of a map with certain properties (e.g., a homeomorphism, isotopy, homotopy) is easy, but showing that such a map cannot exist is hard. The idea of algebraic topology is to find invariant properties preserved by these maps: then, we know that no such map can exist between spaces that differ on these properties. An example of such an invariant property is the number of holes a space has, which we will formalize in the future.

