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Topological Spaces, continued

Lemma 1. Let (X, T) be some topological space, and Y � X. Then, U := {A\Y | A 2 T }

is a topology on Y. We call this a subspace topology.

Proof. We check the three conditions of a topology:

1. ; = ; \ Y, therefore ; 2 U. Similarly, Y = X \ Y, and thus Y 2 U.

2.
S
i2I(Ai \ Y) = (

S
i2IAi) \ Y, and thus

S
i2I(Ai \ Y) 2 U.

3.
Tn
i=1(Ai \ Y) = (

Tn
i=1Ai) \ Y, and thus

Tn
i=1(Ai \ Y) 2 U.

Since we have seen that Rd is a topological space, this already tells us that all subsets
of Rd are topological spaces.

Fact 2. Let X, Y be two topological spaces. Then, X � Y is a topological space, with
the so-called product topology.

Definition 3. A topological space (X, T) is disconnected, if there are two disjoint non-
empy open sets U,V 2 T , such that X = U [ V. A topological space is connected, if
it is not disconnected.
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Metric Spaces

Definition 4. A metric space (X, d) is a set X of points and a distance function d :
X� X→ R satisfying

1. d(p, q) = 0 if and only if p = q.

2. d(p, q) = d(q, p), 8p, q 2 X. (Symmetry)

3. d(p, q) � d(p, s) + d(s, q), 8p, q, s 2 X. (Triangle inequality)

Note that these three conditions imply that d(p, q) � 0 for all p, q 2 X: If some distance
d(p, q) would be negative, we would have 0 = d(p, p) � d(p, q)+d(q, p) = 2�d(p, q) < 0,
a contradiction.

Fact 5. Every metric space has a topology (the metric space topology) given by the
open metric balls B(c, r) = {p 2 X | d(p, c) < r} and their unions.

Maps between topological spaces

Definition 6. A function f : X → Y is continuous if for every open set U � Y, its
pre-image f−1(U) � X (the set of all elements x 2 X such that f(x) 2 U) is open.
Continuous functions are also called maps. If f is injective, it is called an embed-
ding.

Examples:

For X � Y, we write X ↪→ Y for the function f(x) = x, 8x 2 X. This function, which
is also called the inclusion map, is continuous: f−1(U) = U \ X, which is open in the
subspace topology on X.

For a function f : R → R, continuity agrees with the \ε−δ" de�nition of continuity from
calculus.

Definition 7. A homeomorphism is a bijective map f : X → Y whose inverse is also
continuous. Two topological spaces are homeomorphic, if there is a homeomorphism
between them. We also write X ' Y to say that X, Y are homeomorphic.

Examples:

The boundary of a tetrahedron is homeomorphic to the sphere S2. Idea: Take a point
c within the tetrahedron, and send each point p to the point f(p) on the ray from c

through p such that d(c, f(p)) = 1.

I := (−1, 1) is homeomorphic to R. The following map f is a homeomorphism: f : I→ R,
x 7→ x

1−|x|
. Its inverse is f−1 : R → I, y 7→ y

1+|y|
.
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All knots (embeddings of the circle into R3) are homeomorphic. Thus, we cannot dis-
tinguish between knots using only homeomorphism.

'

Figure 1: Two knots.

Definition 8. An isotopy connecting X � Rd and Y � Rd is a continous map φ :
X � [0, 1] → Rd, such that φ(X, 0) = X, φ(X, 1) = Y, and 8t 2 [0, 1], φ(�, t) is a
homeomorphism between X and its image. Two spaces are called isotopic, if there
is an isotopy connecting them.

Examples:

Let X � R be the union of 0, and [1, 2], and let Y � R be the union of [0, 1] and 2. These
spaces are homeomorphic (X ' Y), but not isotopic.

The two knots from Figure 1 above are also not isotopic.

We have also seen an isotopy between the two spaces in Figure 2, the isotopy is illustrated
by the following video: https://www.youtube.com/watch?v=wDZx9B4TAXo

Figure 2: Left: Both handcu�s are connected to an in�nite pole. Right: Only one loop
of the handcu�s is connected to the in�nite pole. These spaces are isotopic.
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Definition 9. Let g, h be maps X → Y. A homotopy connecting g and h is a map
H : X � [0, 1] → Y such that H(�, 0) = g and H(�, 1) = h. In this case g and h are
called homotopic.

Examples:

The inclusion map g : B3 ↪→ R3 (where B3 is the unit ball in R3), and h : B3 → R3 which
sends every point to the origin, are homotopic, as shown by the homotopy

H(x, t) = (1− t)g(x).

The identity function g : S1 → S1 and h : S1 → S1 which sends everything to a single
point p 2 S1 are not homotopic.

Definition 10. Two spaces X, Y are homotopy equivalent if there exist maps g : X→ Y

and h : Y → X such that:

• h � g is homotopic to idX (the identity map x 7→ x), and

• g � h is homotopic to idY.

Example: The circle S1 and R2 \ {0} are homotopy equivalent. We pick g as the inlusion
map S1 ↪→ R2 \ {0}, and h(x) := x

|x|
. We see that h � g(x) = x, i.e., h � g = idS1 .

Furthermore, g � h(x) = h(x). g � h and idR2\{0} are homotopic as certi�ed by the
homotopy H(x, t) := tx+ (1− t)h(x).

This example shows us that homotopy equivalence is a somewhat weaker property than
homeomorphism, since these two spaces do not even have the same dimension (and thus
cannot be homeomorphic), but they are homotopy equivalent.

Definition 11. Let A � X. A deformation retract of X onto A is a map R : X�[0, 1] → X,
such that

• R(�, 0) = idX

• R(x, 1) 2 A, 8x 2 X

• R(a, t) = a, 8a 2 A, t 2 [0, 1]

If such a deformation retract of X onto A exists, we also say that A is a deformation
retract of X.

The intuition behind a deformation retract is to continuously shrink X to A, while leaving
A �xed.

Fact 12. If A is a deformation retract of X (there exists a deformation retract of X
onto A), then A and X are homotopy equivalent.
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Examples:

The circle S1 is a deformation retract of R2 \ {0}: R(x, t) = (1− t)x+ t � x
|x|
.

A punctured torus can be deformation retracted onto the symbol 8 where one of the two
circles is rotated by 90, as seen by the following video:
https://www.youtube.com/watch?v=tz3QWrfPQj4

Lemma 13. If X and Y are homeomorphic, they are also homotopy equivalent.

Proof. Let g : X→ Y be the homeomorphism, and h := g−1 its inverse. Then g�h = idY
and h � g = idX, and id is homotopic to itself.

Fact 14. X, Y are homotopy equivalent if and only if there exists a space Z such that
X and Y are deformation retracts of Z.

An example of this fact can be found in Figure 3 below:

Figure 3: The top space deformation retracts to both spaces below, showing that they
are homotopy equivalent.

We note that in general, showing existence of a map with certain properties (e.g., a
homeomorphism, isotopy, homotopy) is easy, but showing that such a map cannot exist
is hard. The idea of algebraic topology is to �nd invariant properties preserved by these
maps: then, we know that no such map can exist between spaces that di�er on these
properties. An example of such an invariant property is the number of holes a space has,
which we will formalize in the future.

5

https://www.youtube.com/watch?v=tz3QWrfPQj4

