Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Institute of Theoretical Computer Science
Patrick Schnider

Introduction to Topological Data Analysis
Scribe Notes 3
HS22

Scribe notes by Simon Weber. Please contact me for corrections.
Lecture date: March 2, 2023
Last update: Thursday $2^{\text {nd }}$ March, 2023, 14:42

A brief recap of algebra

Definition 1. A group $(\mathrm{G},+)$ is a set G together with a binary operation "+" such that

1. $\forall \mathrm{a}, \mathrm{b} \in \mathrm{G}: \mathrm{a}+\mathrm{b} \in \mathrm{G}$
2. $\forall a, b, c \in G:(a+b)+c=a+(b+c)$
(Associativity)
3. $\exists 0 \in G: a+0=0+a=a \forall a \in G$
4. $\forall a \in G \exists-a \in G: a+(-a)=0$
$(\mathrm{G},+)$ is abelian if we also have
5. $\forall \mathrm{a}, \mathrm{b} \in \mathrm{G}: \mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$
(Commutativity)

Examples:
$(\mathbb{Z},+)$ is a group (even an abelian one), but not $(\mathbb{N},+)$.
The moves of a Rubik's cube also form a group (with the operation being concatenation), but not an abelian one.

Definition 2. Let $(\mathrm{G},+)$ be a group.
A subset $\mathrm{A} \subseteq \mathrm{G}$ is a generator if every element of G can be written as a finite sum of elements of A and their inverses.
A subset $\mathrm{B} \subseteq \mathrm{G}$ is a basis if every element of G can be uniquely written as a finite sum of elements of B and their inverses (ignoring trivial cancellations, i.e., $a+c+(-c)+(-b)=a+(-b))$.
An abelian group that has a basis is called free.
Examples:
The six standard moves of the Rubik's cube (rotating the top, bottom, front, back, left, or right layer clockwise by 90) are a generator for the Rubik's cube moves.
$\{1\}$ is a basis of $(\mathbb{Z},+)$.

Definition 3. For some group $(\mathrm{G},+), \mathrm{H} \subseteq \mathrm{G}$ is a subgroup, if $(\mathrm{H},+)$ is also a group.

Example: The even integers (including 0) are a subgroup of $(\mathbb{Z},+)$.

Definition 4. Let $\mathrm{H} \subseteq \mathrm{G}$ be a subgroup of $(\mathrm{G},+)$, and $\mathrm{a} \in \mathrm{G}$.
The left coset $\mathrm{a}+\mathrm{H}$ is the set $\mathrm{a}+\mathrm{H}:=\{\mathrm{a}+\mathrm{b} \mid \mathrm{b} \in \mathrm{H}\}$, and the right coset $\mathrm{H}+\mathrm{a}:=$ $\{\mathrm{b}+\mathrm{a} \mid \mathrm{b} \in \mathrm{H}\}$. If G is abelian, $\mathrm{a}+\mathrm{H}=\mathrm{H}+\mathrm{a}$, and they are simply called the coset. For G abelian, the quotient group of G by H , denoted by G / H, is the group on cosets $\{a+H, a \in G\}$ with the operation \oplus defined as $(a+H) \oplus(b+H)=(a+b)+H$, $\forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$.

Examples:
Let $G=(\mathbb{Z},+)$ and $H=n \mathbb{Z}=\{n \cdot a \mid a \in \mathbb{Z}\}$. Then, $G / H=\{0+\mathbb{Z}, 1+\mathbb{Z}, \ldots,(n-1)+\mathbb{Z}\}$ is the group usually referred to as \mathbb{Z}_{n}, the group of modular arithmetic modulo n.
\mathbb{R} / \mathbb{Z} is the circle group (the multiplicative group of all complex numbers of absolute value 1).

But if we say a group is another group, what exactly do we mean? We again define equivalences by the existence of certain maps between the groups.

Definition 5. A map $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{H}$ between $(\mathrm{G},+$) and (H, \star) is a homomorphism if $h(a+b)=h(a) \star h(b), \forall a, b \in G$.
A bijective homomorphism is called an isomorphism, and then we write $\mathrm{G} \cong \mathrm{H}$ and say that G and H are isomorphic.
kernel $\operatorname{ker} h:=\{a \in G \mid h(a)=0\}$
image $\operatorname{im} h:=\{b \in H \mid \exists a \in G$ with $h(a)=b\}$
cokernel coker $\mathrm{h}:=\mathrm{H} / \mathrm{imh}$

What are we assuming in our definition of the cokernel? For the definition of a quotient group to apply, we need the divisor group to be a subgroup of the dividend group. Luckily, the following lemma says that imh is always a subgroup of H .

Lemma 6. ker h and imh are subgroups of $(\mathrm{G},+)$ and (H, \star), respectively.

Proof. We first prove this for ker h.

1. $\mathrm{a}, \mathrm{b} \in \operatorname{ker} \mathrm{h} \Rightarrow \mathrm{h}(\mathrm{a})=\mathrm{h}(\mathrm{b})=0$. By definition of homomorphism, $\mathrm{h}(\mathrm{a}+\mathrm{b})=$ $h(a) \star h(b)=0 \star 0=0$, and thus by definition of ker $h, a+b \in$ ker h. We conclude that ker h is closed under + .
2. Associativity follows from associativity of + in G, since ker $h \subseteq G$.
3. $\forall a \in G: h(0) \star h(a)=h(0+a)=h(a)$, and thus $h(0)=0$, from which $0 \in$ ker h follows.
4. Let $a \in \operatorname{ker} h$. Then, $0=h(0)=h(a-a)=h(a) \star h(-a)=0 \star h(-a)=h(-a)$, and thus $-a \in$ ker h.

The proof for imh is left as an exercise.

Definition 7. $(R,+, \cdot)$ is a ring, if

1. $(R,+)$ is an abelian group.
2. $\forall a, b, c \in R$:

$$
(\mathrm{a} \cdot \mathrm{~b}) \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{~b} \cdot \mathrm{c}) \quad \text { and }
$$

$a \cdot(b+c)=a \cdot b+a \cdot c$,
$(b+c) \cdot a=b \cdot a+c \cdot a$
(Distributivity)
3. $\exists 1 \in R$, such that $a \cdot 1=1 \cdot a=a \forall a \in R$.
(Multiplicative identity)
If . is commutative, we say that R is commutative.

Definition 8. A commutative ring in which every non-zero element has a multiplicative inverse $(\forall a \in R \backslash\{0\}, \exists b \in R: a \cdot b=1)$ is called a field.

Definition 9. Given a ring $(\mathrm{R},+, \cdot)$ with multiplicative identity 1, an R -module M is an abelian group (M, \oplus) with an operation $\otimes: R \times M \rightarrow M$ such that for all $r, r^{\prime} \in R$ and $x, y \in M$, we have

1. $r \otimes(x+y)=(r \otimes x) \oplus(r \otimes y)$
2. $\left(r+r^{\prime}\right) \otimes x=(r \otimes x) \oplus\left(r^{\prime} \otimes x\right)$
3. $1 \otimes x=x$
4. $\left(r \cdot r^{\prime}\right) \otimes x=r \otimes\left(r^{\prime} \otimes x\right)$

If R is a field, the R -module is called a vector space.

In the literature, we often use the same symbol (\cdot) for both operations \cdot and \otimes, and + for both + in R and \oplus in M. For a vector space, this should feel quite normal, since for the vector space \mathbb{R}^{n} (which is an \mathbb{R}-module), we also write \cdot for multiplying scalars to both scalars and vectors, and + for addition of both scalars and vectors.

