

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science Patrick Schnider

Introduction to	Topological	Data Analysis	Scribe Notes 3	HS22

Scribe notes by Simon Weber. Please contact me for corrections. Lecture date: March 2, 2023 Last update: Thursday 2nd March, 2023, 14:42

A brief recap of algebra

Definition 1. A group (G, +) is a set G together with a binary operation "+" such that

- 1. $\forall a, b \in G: a + b \in G$
- 2. $\forall a, b, c \in G: (a+b) + c = a + (b+c)$ (Associativity)
- 3. $\exists 0 \in G: a + 0 = 0 + a = a \ \forall a \in G$
- 4. $\forall a \in G \exists -a \in G : a + (-a) = 0$

(G, +) is abelian if we also have

5. $\forall a, b \in G: a + b = b + a$

(Commutativity)

Examples:

 $(\mathbb{Z},+)$ is a group (even an abelian one), but not $(\mathbb{N},+)$.

The moves of a Rubik's cube also form a group (with the operation being concatenation), but not an abelian one.

Definition 2. Let (G, +) be a group.

A subset $A \subseteq G$ is a generator if every element of G can be written as a finite sum of elements of A and their inverses.

A subset $B \subseteq G$ is a basis if every element of G can be uniquely written as a finite sum of elements of B and their inverses (ignoring trivial cancellations, i.e., a + c + (-c) + (-b) = a + (-b)).

An abelian group that has a basis is called free.

Examples:

The six standard moves of the Rubik's cube (rotating the top, bottom, front, back, left, or right layer clockwise by 90) are a generator for the Rubik's cube moves.

 $\{1\}$ is a basis of $(\mathbb{Z}, +)$.

Definition 3. For some group (G, +), $H \subseteq G$ is a subgroup, if (H, +) is also a group.

Example: The even integers (including 0) are a subgroup of $(\mathbb{Z}, +)$.

Definition 4. Let $H \subseteq G$ be a subgroup of (G, +), and $a \in G$.

The left coset a + H is the set $a + H := \{a + b \mid b \in H\}$, and the right coset $H + a := \{b + a \mid b \in H\}$. If G is abelian, a + H = H + a, and they are simply called the coset. For G abelian, the quotient group of G by H, denoted by G/H, is the group on cosets $\{a + H, a \in G\}$ with the operation \oplus defined as $(a + H) \oplus (b + H) = (a + b) + H$, $\forall a, b \in G$.

Examples:

Let $G = (\mathbb{Z}, +)$ and $H = n\mathbb{Z} = \{n \cdot a \mid a \in \mathbb{Z}\}$. Then, $G/H = \{0 + \mathbb{Z}, 1 + \mathbb{Z}, \dots, (n-1) + \mathbb{Z}\}$ is the group usually referred to as \mathbb{Z}_n , the group of modular arithmetic modulo n.

 \mathbb{R}/\mathbb{Z} is the circle group (the multiplicative group of all complex numbers of absolute value 1).

But if we say a group *is* another group, what exactly do we mean? We again define equivalences by the existence of certain maps between the groups.

Definition 5. A map $h : G \to H$ between (G, +) and (H, \star) is a homomorphism if $h(a + b) = h(a) \star h(b), \forall a, b \in G$.

A bijective homomorphism is called an isomorphism, and then we write $G \cong H$ and say that G and H are isomorphic.

kernel ker $h := \{a \in G \mid h(a) = 0\}$

image im $h := \{b \in H \mid \exists a \in G \text{ with } h(a) = b\}$

 $cokernel \operatorname{coker} h := H/\operatorname{im} h$

What are we assuming in our definition of the cokernel? For the definition of a quotient group to apply, we need the divisor group to be a subgroup of the dividend group. Luckily, the following lemma says that im h is always a subgroup of H.

Lemma 6. ker h and im h are subgroups of (G, +) and (H, \star) , respectively.

Proof. We first prove this for ker h.

- 1. $a, b \in \text{ker } h \Rightarrow h(a) = h(b) = 0$. By definition of homomorphism, $h(a + b) = h(a) \star h(b) = 0 \star 0 = 0$, and thus by definition of ker h, $a + b \in \text{ker } h$. We conclude that ker h is closed under +.
- 2. Associativity follows from associativity of + in G, since ker $h \subseteq G$.
- 3. $\forall a \in G : h(0) \star h(a) = h(0 + a) = h(a)$, and thus h(0) = 0, from which $0 \in \ker h$ follows.

4. Let $a \in \ker h$. Then, $0 = h(0) = h(a - a) = h(a) \star h(-a) = 0 \star h(-a) = h(-a)$, and thus $-a \in \ker h$.

The proof for im h is left as an exercise.

Definition 7. $(R, +, \cdot)$ is a ring, if

1. (R, +) is an abelian group.

2. $\forall a, b, c \in R:$
 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ and (Associativity of .)
 $a \cdot (b + c) = a \cdot b + a \cdot c,$
 $(b + c) \cdot a = b \cdot a + c \cdot a$
(Distributivity)3. $\exists 1 \in R$, such that $a \cdot 1 = 1 \cdot a = a \forall a \in R$.

If \cdot is commutative, we say that R is commutative.

Definition 8. A commutative ring in which every non-zero element has a multiplicative inverse ($\forall a \in R \setminus \{0\}, \exists b \in R : a \cdot b = 1$) is called a field.

Definition 9. Given a ring $(R, +, \cdot)$ with multiplicative identity 1, an R-module M is an abelian group (M, \oplus) with an operation $\otimes : R \times M \to M$ such that for all $r, r' \in R$ and $x, y \in M$, we have

- 1. $r \otimes (x + y) = (r \otimes x) \oplus (r \otimes y)$
- 2. $(\mathbf{r} + \mathbf{r}') \otimes \mathbf{x} = (\mathbf{r} \otimes \mathbf{x}) \oplus (\mathbf{r}' \otimes \mathbf{x})$
- 3. $1 \otimes x = x$
- 4. $(\mathbf{r} \cdot \mathbf{r}') \otimes \mathbf{x} = \mathbf{r} \otimes (\mathbf{r}' \otimes \mathbf{x})$

If R is a field, the R-module is called a vector space.

In the literature, we often use the same symbol (\cdot) for both operations \cdot and \otimes , and + for both + in R and \oplus in M. For a vector space, this should feel quite normal, since for the vector space \mathbb{R}^n (which is an \mathbb{R} -module), we also write \cdot for multiplying scalars to both scalars and vectors, and + for addition of both scalars and vectors.