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Simplicial Complexes

(Slides were used for this chapter, for �gures refer to the slides)

Definition 1. A k-simplex in Rd is the convex hull of k+1 a�nely independent points
in Rd.

A face of a simplex is the convex hull of a subset of its vertices. In particular, every
face of a simplex is also a simplex. The empty set ; is also a face. The (k− 1)-faces are
called facets.

Definition 2. A geometric simplicial complex is a �nite family K of simplices such that

• if τ 2 K and σ is a face of τ, then σ 2 K, and

• for σ, τ 2 K, their intersection σ \ τ is a face of both.

We say the dimension of a simplicial complex is the maximum dimension of any simplex,
and the dimension of a k-simplex is k.

Definition 3. An abstract simplicial complex K is a family of subsets of a �nite vertex
set V(K) such that if τ 2 K and σ � τ, then σ 2 K.

A k-simplex here is a subset of k+ 1 elements, and thus again called k-dimensional.

We can de�ne from every geometric simplicial complex an abstract simplicial complex,
by simply taking the set of points as the vertex set, and adding the correct subset for
every simplex. In the inverse direction, we have to talk about geometric realizations:

Definition 4. A geometric simplicial complex K is a geometric realization of some
abstract simplicial complex K 0, if there is an embedding e : V(K 0) → Rd that takes
every (abstract) k-simplex {v0, . . . , vk} in K

0 to the (geometric) k-simplex that is the
convex hull of e(v0), . . . , e(vk).
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Does every abstract simplicial complex have a geometric realization? For 1-dimensional
complexes (graphs), we know that dimension 3 su�ces. This generalizes to the following
theorem:

Theorem 5. Every k-dimensional simplicial complex has a geometric realization in
R2k+1.

In fact, we can always �nd a geometric realization by placing the vertices as distinct
points on themoment curve in R2k+1, which is the curve given by f(t) = (t, t2, . . . , t2k+1).

Since we now know that abstract and geometric simplicial complexes can be translated
into each other, we will never make the distinction between them again. As a subset of
euclidean space, a simplicial complex thus also inherits the subspace topology from Rd,
which allows us to view simplicial complexes as topological spaces.

Definition 6. A simplicial complex K is a triangulation of a topological space X, if |K|
is homeomorphic to X.

Not all topological spaces are triangulable, but in this course we will not deal with
these spaces. Also note that a triangulable space has in�nitely many triangulations, for
example by subdividing simplices.

Definition 7. For a �nite collection U of sets, its nerve N(U) is a simplicial complex
on the vertex set U that contains U0, . . . , Uk as a k-simplex i� U0 \ . . . \Uk 6= ;.

Definition 8. Let X be a metric space, and U a �nite family of closed subsets of X.
We call U a good cover, if every non-empty intersection of sets in U is contractible
(i.e., homotopy equivalent to a point).

Theorem 9 (Nerve theorem). If U is a good cover, then |N(U)| is homotopy equivalent
to
S
U.

The nerve theorem fails if some sets in U are closed, and some open: We can have an
open and a closed set which do not intersect, but whose union is connected.

Definition 10. A map f : K1 → K2 (which maps vertices of K1 to vertices of K2, also
called a vertex map) is called simplicial if for every simplex {v0, . . . , vk} 2 K1, we
have that {f(v0), . . . , f(vk)} is a simplex in K2.

Fact 11. Every continuous map f : |K1| → |K2| can be approximated arbitrarily closely
by simplicial maps on appropriate subdivisions of K1 and K2.

This shows that simplicial maps are the analogue of continuous maps in the world of
simplicial complexes.
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Definition 12. Two simplicial maps f1, f2 : K1 → K2 are contiguous if for every simplex
σ 2 K1 we have that f1(σ) [ f2(σ) is a simplex in K2.

This is the analogue of two continuous maps being homotopic.

Definition 13. A face of a simplicial complex is called free, if it is a non-maximal
(not inclusion-maximal) and contained in a unique maximal face.

Note that every face that is a superset of a free face is either a maximal face or also
free.

Definition 14. A collapse is the operation of removing all faces γ that contain some
�xed free face τ.

Definition 15. A simplicial complex is collapsible if there is a sequence of collapses
leading to a point.

A collapse can be written as a deformation retract. Thus, a simplicial complex that
is collapsible is contractible. We will see that the converse does not hold: A good
counterexample for this is Bing's house with two rooms. In any triangulation of it, there
are no free faces: As a 2-dimensional space, there are only vertices, edges and triangles.
We only have to check edges, since triangles are maximal, and vertices are part of edges
which are never maximal. Every edge is incident to at least two triangles (there are no
edges on the \boundary"), and thus they are not free. Since we have no free faces, it is
not collapsible.
But Bing's house is contractible. Why? It does not deformation retract to a point, but a
3-dimensional ball deformation retracts to both Bing's house and a point, see the slides
for some �gures.

The following table summarizes the equivalent words in \continuous topology" and in
combinatorial topology on simplicial complexes:

\continuous" topology combinatorial topology
topological spaces simplicial complexes
continuous maps simplicial maps
homotopic maps contiguous maps

deformation retracts collapses

For triangulable spaces, we can treat both sides as equivalent.
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Homology

Chains

Let K be a simplicial complex with mp p-simplices.

Definition 16. A p-chain c (in K) is a formal sum1 of p-simplices added with some
coe�cients from some ring R.

c =

mp∑
i=1

αiσi

where αi 2 R and σi 2 K are p-simplices.

Two p-chains c =
∑
αiσi and c

0 =
∑
α 0

iσi (both in K) can be added:

c+ c 0 :=

mp∑
i=1

(αi + α
0

i)σi

We write Cp(K) for the set of all p-chains in K, called the p-th chain group. The
following observation shows that this name makes sense:

Observation 17. (Cp(K),+) is an abelian group, it is free, and the p-simplices form a
basis.

Proof. To show that it is a group, we have

1. 8c1, c2 2 Cp(K), we have c1 + c2 2 Cp(K)

2. 8c1, c2, c3 2 Cp(K),

(c1 + c2) + c3 =
∑

(α
(1)
i + α

(2)
i )σi +

∑
α
(3)
i σi =

∑
(α

(1)
i + α

(2)
i + α

(3)
i )σi =∑

α
(1)
i σi +

∑
(α

(2)
i + α

(3)
i )σi = c1 + (c2 + c3).

3. 0 =
∑
0σi 2 Cp(K)

4. 8c 2 Cp(K) we have −c =
∑

(−αiσi) 2 Cp(K) and c+ (−c) =
∑

(αi − αi)σi = 0

Commutativity follows from + being commutative, thus the group is abelian. The p-
simplices clearly form a basis, since the set of chains is de�ned as the set of formal sums
of these p-simplices.

1A formal sum just means that we formally write a sum, but that there is no meaning behind the

operation of adding the simplices.
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