Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Institute of Theoretical Computer Science
Patrick Schnider
Introduction to Topological Data Analysis
Scribe Notes 6
FS23

Scribe notes by Simon Weber. Please contact me for corrections.
Lecture date: March 10, 2023
Last update: Friday $10^{\text {th }}$ March, 2023, 14:02
For a k-dimensional simplicial complex K, we get a sequence of homomorphisms, called the chain complex:

$$
0=C_{k+1}(K) \xrightarrow{\delta_{k+1}} C_{k}(K) \xrightarrow{\delta_{k}} C_{k-1}(K) \xrightarrow{\delta_{k-1}} C_{k-2}(K) \cdots C_{2}(K) \xrightarrow{\delta_{2}} C_{1}(K) \xrightarrow{\delta_{1}} C_{0}(K) \xrightarrow{\delta_{0}} C_{-1}=0
$$

Cycle and boundary groups

Definition 1. A p-chain c is a p -cycle if $\delta(\mathrm{c})=0$.
Z_{p} is the p -th cycle group, consisting of all p-cycles.
Lemma 2. Z_{p} is a group.
Proof. $\mathrm{Z}_{\mathrm{p}}=$ ker δ_{p}. (Recall that the kernel of a homomorphism is a subgroup of its domain.)

Definition 3. A p-chain c is a p-boundary if $\exists c^{\prime} \in C_{p+1}$ such that $\delta\left(c^{\prime}\right)=c$. B_{p} is the p-th boundary group, consisting of all p-boundaries.

Lemma 4. B_{p} is a group.

Proof. $\mathrm{B}_{\mathrm{p}}=\mathrm{im} \delta_{\mathrm{p}+1}$.
Fact 5. $\mathrm{B}_{\mathrm{p}} \subseteq \mathrm{Z}_{\mathrm{p}} \subseteq \mathrm{C}_{\mathrm{p}}$, and all of them are abelian and free.

We will not prove this statement here, but to see that $\mathrm{B}_{\mathrm{p}} \subseteq \mathrm{Z}_{\mathrm{p}}$, consider that the boundary of a boundary is empty (Lemma 4 from the scribe notes 5).

Homology

Definition 6. The p-th homology group $\mathrm{H}_{\mathrm{p}}\left(\mathrm{K} ; \mathbb{Z}_{2}\right)$ is the quotient group $\mathrm{Z}_{\mathrm{p}}(\mathrm{K}) / \mathrm{B}_{\mathrm{p}}(\mathrm{K})$.
In essence, in this group cycles that differ only by boundaries are equivalent. More formally, the coset [$c]=c+B_{p}$ is the homology class of c. We say that c and c^{\prime} are homologous, if $[c]=\left[c^{\prime}\right]$, or equivalently $c \in c^{\prime}+B_{p}$ or equivalently $c+c^{\prime} \in B_{p}$.

Example:

Figure 1: c^{\prime} and c are homologous cycles.

Fact 7.

- H_{p} is abelian and free.
- H_{p} is a \mathbb{Z}_{2}-vector space.

REMARK: Homology can be defined over any ring, e.g. over \mathbb{Z} instead of \mathbb{Z}_{2}, but in this case it might not be free.

Example of the Homology group:

Definition 8. $\beta_{p}:=\operatorname{dim} H_{p}=\operatorname{dim} Z_{p}-\operatorname{dim} B_{p}$ is the p-th Betti number.
In the defintion above, dim denotes the dimension of a vector space as you know it from Linear Algebra, i.e., $\operatorname{dim} H_{p}$ is the number of elements in a basis of H_{p}.

We can now also talk about homology of triangulable topological spaces; we can simply triangulate them and talk about the homology of the triangulation. But, so far, it seems like the structure of the homology group might differ depending on the choice of triangulation of some topological space. The aim of the following chapter is to remove this dependency.

Singular Homology

The idea of singular homology is to remove the need for a fixed triangulation by looking at all possible simplices at once.
Let X be a topological space, and let Δ^{p} be the standard p-simplex in \mathbb{R}^{p+1}.

Definition 9. A singular p-simplex is a map $\sigma: \Delta^{\mathrm{p}} \rightarrow \mathrm{X}$.

Note that in this definition we do not require σ to be injective, thus it would even be possible to map the simplex to a single point.
We now define C_{p} the same way as before, but now on the family of all singular p simplices, which makes the group uncountably infinite. We also define δ_{p} as before, leading to Z_{p} and B_{p} now also being uncountably infinite. Similarly, $H_{p}(X)=Z_{p}(X) / B_{p}(X)$.

Theorem 10. Let X be a topological space, K a triangulation of X . Then we have $\mathrm{H}_{\mathrm{p}}(\mathrm{X}) \cong \mathrm{H}_{\mathrm{p}}(\mathrm{K})$ for all $\mathrm{p} \geq 0$.

Corollary 11. Let $\mathrm{K}_{1}, \mathrm{~K}_{2}$ be two distinct triangulations of X . Then, $\mathrm{H}_{\mathrm{p}}\left(\mathrm{K}_{1}\right) \cong \mathrm{H}_{\mathrm{p}}\left(\mathrm{K}_{2}\right)$ for all $\mathrm{p} \geq 0$, that is, homology is independent of the chosen triangulation.

The 0-th homology group

Recall that the 0 -simplices of a simplicial complex K are simply its vertices. Since the vertices do not have any boundaries, every vertex is a 0 -cycle. The boundary of a 1 -simplex simply consists of the 2 vertices which are connected by the edge.

We can thus see that two vertices v_{1} and v_{2} are homologous if there is a path from v_{1} to v_{2}, and the homology class $\left[v_{1}\right]$ is simply the connected component containing v_{1}.

Observation 12. $\beta_{0}(\mathrm{~K})$ is the number of connected components of K .
We can also conclude that the 0-homology classes are formal sums of connected components.

Homology of Spheres

We will now investigate the homology of the spheres S^{d}. We will prove the following theorem, as our intuition would tell us:

Theorem 13. For any $\mathrm{d}>0$, we have

$$
\begin{aligned}
H_{p}\left(S^{d}\right) & = \begin{cases}\mathbb{Z}_{2} & p \in\{0, d\} \\
0 & \text { else. }\end{cases} \\
\beta_{p}\left(S^{d}\right) & = \begin{cases}1 & p \in\{0, d\} \\
0 & \text { else. }\end{cases}
\end{aligned}
$$

Since we have shown in the chapter "Singular Homology" that homology is independent from the chosen triangulation, let us fix some triangulation of the sphere S^{d}. A good candidate (for its simplicity) is $S^{\mathrm{d}} \simeq \delta\left(\Delta^{\mathrm{d}+1}\right)$, on the vertex set $\mathrm{V}=\left\{\nu_{0}, \ldots, v_{\mathrm{d}+1}\right\}$.
$H_{0}\left(S^{d}\right)$: Let us first investigate $H_{0}\left(S^{d}\right)$. Since all vertices are connected, all vertices are homologous, and $\mathrm{H}_{0}\left(\mathrm{~S}^{\mathrm{d}}\right)=\langle[v]\rangle \cong \mathbb{Z}_{2}$.
$\mathrm{H}_{\mathrm{d}}\left(\mathrm{S}^{\mathrm{d}}\right)$: Finally, let us check $\mathrm{H}_{\mathrm{d}}\left(\mathrm{S}^{\mathrm{d}}\right)$. Since $\delta\left(\Delta^{\mathrm{d}+1}\right)$ is a d-dimensional simplicial complex, and thus does not contain any ($d+1$)-simplices, $\delta_{d+1}: C_{d+1} \rightarrow C_{d}$ maps everything (the only element is 0 , anyways) to 0 . Thus, $\mathrm{H}_{\mathrm{d}}\left(\mathrm{S}^{\mathrm{d}}\right) \cong \mathrm{Z}_{\mathrm{d}}\left(\mathrm{S}^{\mathrm{d}}\right)$.

There is exactly one non-trivial cycle in $\delta\left(\Delta^{\mathrm{d}+1}\right)$, the one containing all d -simplices. Thus, $H_{d}\left(S^{d}\right) \cong Z_{d}\left(S^{d}\right) \cong \mathbb{Z}_{2}$.

